cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A042943 Numbers k such that binomial(2^k, k) is divisible by binomial(2^k, 2).

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 14, 17, 19, 22, 23, 25, 26, 27, 29, 31, 33, 35, 37, 38, 39, 41, 43, 45, 46, 47, 49, 50, 51, 53, 55, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 79, 81, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 106, 107, 109, 111
Offset: 1

Views

Author

Labos Elemer, Apr 11 2001

Keywords

Comments

Does not contain multiples of 4 (A008586).

Crossrefs

Programs

  • Mathematica
    Select[Range[150],Divisible[Binomial[2^#,#],Binomial[2^#,2]]&]  (* Harvey P. Dale, Mar 24 2011 *)
  • PARI
    isok(k) = (binomial(2^k, k) % binomial(2^k, 2)) == 0; \\ Michel Marcus, May 14 2018
    
  • Python
    from math import comb
    from itertools import count, islice
    def A042943_gen(startvalue=1): # generator of terms >= startvalue
        for k in count(max(startvalue,1)):
            if comb(m:=1<A042943_list = list(islice(A042943_gen(),30)) # Chai Wah Wu, Jul 31 2025

Formula

k : A014070(k) mod A006516(k) = binomial(2^k, k) mod binomial(2^n, 2) = 0.