cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A042967 Primes p such that x^7 = 2 has no solution mod p.

Original entry on oeis.org

29, 43, 71, 113, 127, 197, 211, 239, 281, 337, 379, 421, 449, 463, 491, 547, 617, 659, 701, 743, 757, 827, 883, 911, 967, 1009, 1051, 1093, 1289, 1303, 1373, 1429, 1471, 1499, 1583, 1597, 1667, 1723, 1877, 1933, 2017, 2087, 2129, 2213, 2269, 2297, 2311, 2339, 2381, 2423, 2437, 2521
Offset: 1

Views

Author

Keywords

Comments

Complement of A042966 relative to A000040. Coincides for the first 96 terms with the sequence of primes p such that x^49 = 2 has no solution mod p (first divergence is at 4999, cf. A059667). - Klaus Brockhaus, Feb 04 2001

Examples

			x^7 = 2 has no solution mod 29, so 29 is in the sequence.
8^7 = 2097152 and (2097152 - 2)/31 = 67650, so 31 is not in the sequence.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000) | forall{x: x in ResidueClassRing(p) | x^7 ne 2}]; // Vincenzo Librandi, Aug 21 2012
    
  • Magma
    [p: p in PrimesUpTo(2600) | not exists{x : x in ResidueClassRing(p) | x^7 eq 2} ]; // Vincenzo Librandi, Sep 19 2012
  • Mathematica
    sevPow2ModPQ[p_] := Reduce[Mod[x^7 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[700]], sevPow2ModPQ] (* Vincenzo Librandi, Sep 19 2012 *)