A042967 Primes p such that x^7 = 2 has no solution mod p.
29, 43, 71, 113, 127, 197, 211, 239, 281, 337, 379, 421, 449, 463, 491, 547, 617, 659, 701, 743, 757, 827, 883, 911, 967, 1009, 1051, 1093, 1289, 1303, 1373, 1429, 1471, 1499, 1583, 1597, 1667, 1723, 1877, 1933, 2017, 2087, 2129, 2213, 2269, 2297, 2311, 2339, 2381, 2423, 2437, 2521
Offset: 1
Examples
x^7 = 2 has no solution mod 29, so 29 is in the sequence. 8^7 = 2097152 and (2097152 - 2)/31 = 67650, so 31 is not in the sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(3000) | forall{x: x in ResidueClassRing(p) | x^7 ne 2}]; // Vincenzo Librandi, Aug 21 2012
-
Magma
[p: p in PrimesUpTo(2600) | not exists{x : x in ResidueClassRing(p) | x^7 eq 2} ]; // Vincenzo Librandi, Sep 19 2012
-
Mathematica
sevPow2ModPQ[p_] := Reduce[Mod[x^7 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[700]], sevPow2ModPQ] (* Vincenzo Librandi, Sep 19 2012 *)
Comments