cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A042971 a(n) = (C(2n, n)/2 - (2^(n-1) + ((n+1) mod 2)*C(n-1, n/2-1)))/2.

Original entry on oeis.org

0, 0, 3, 12, 55, 210, 826, 3136, 12027, 45870, 175846, 674784, 2598102, 10024196, 38771188, 150250496, 583368787, 2268706134, 8836184878, 34461323872, 134563944322, 526023515996, 2058355584748, 8061896050432, 31602643220830, 123979613859660, 486734822857596
Offset: 1

Views

Author

Keywords

Comments

Number of distinct asymmetric staircase walks connecting opposite corners of a square grid of side n > 1. - Christian Barrientos, Nov 25 2018

Examples

			U = up, R = right Example of asymmetric staircase walk: URURUURR. - _Christian Barrientos_, Nov 29 2018
		

Crossrefs

Cf. A027306 (for symmetric staircase walks).

Programs

  • Magma
    [(Binomial(2*n,n) -(2^n +(1+(-1)^n)*Binomial(n-1, Floor(n/2)-1) ))/4: n in [1..30]]; // G. C. Greubel, Feb 17 2019
    
  • Mathematica
    Table[Binomial[2n,n]/2-(2^(n-1)+Mod[n+1,2]Binomial[n-1, n/2-1]),{n,30}]/2
  • PARI
    a(n) = (binomial(2*n,n)/2 - (2^(n-1) + if (((n+1) % 2), binomial( n-1, n/2-1))))/2; \\ Michel Marcus, Nov 25 2018
    
  • Sage
    [(binomial(2*n,n) -(2^n + (1+(-1)^n)*binomial(n-1, floor(n/2)-1)))/4 for n in (1..30)] # G. C. Greubel, Feb 17 2019