cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A042972 Decimal expansion of i^(-i), where i = sqrt(-1).

Original entry on oeis.org

4, 8, 1, 0, 4, 7, 7, 3, 8, 0, 9, 6, 5, 3, 5, 1, 6, 5, 5, 4, 7, 3, 0, 3, 5, 6, 6, 6, 7, 0, 3, 8, 3, 3, 1, 2, 6, 3, 9, 0, 1, 7, 0, 8, 7, 4, 6, 6, 4, 5, 3, 4, 9, 4, 0, 0, 2, 0, 8, 1, 5, 4, 8, 9, 2, 4, 2, 5, 5, 1, 9, 0, 4, 8, 9, 1, 5, 8, 2, 1, 3, 6, 7, 4, 8, 7, 0, 4, 7, 6, 6, 5, 8, 3, 8, 8, 3, 3, 5, 4
Offset: 1

Views

Author

Keywords

Comments

Square root of Gelfond's constant (A039661). Since Gelfond's constant e^Pi is transcendental, e^(Pi/2) is transcendental. - Daniel Forgues, Apr 15 2011
The complex sequence (...((((i)^i)^i)^i)^...) (n pairs of brackets) is periodic with period 4 and the first four entries are i, e^(-Pi/2), -i, e^(+Pi/2). See A049006 for e^(-Pi/2). - Wolfdieter Lang, Apr 27 2013
A solution of x^i + x^(-i) = 0. In fact, x = Exp(Pi/2 + k*Pi), where k is any integer. - Robert G. Wilson v, Feb 04 2014

Examples

			4.81047738096535165547303566670383312639017087466453494002...
		

Crossrefs

Cf. A049006.

Programs

Formula

Equals i^(-i) = i^(1/i) = e^(Pi/2).
Also (((i)^i)^i)^i. See a comment above on such powers. - Wolfdieter Lang, Apr 27 2013

Extensions

a(100) corrected by Nathaniel Johnston, Apr 15 2011