cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A045472 Primes congruent to {1, 6} mod 7.

Original entry on oeis.org

13, 29, 41, 43, 71, 83, 97, 113, 127, 139, 167, 181, 197, 211, 223, 239, 251, 281, 293, 307, 337, 349, 379, 419, 421, 433, 449, 461, 463, 491, 503, 547, 587, 601, 617, 631, 643, 659, 673, 701, 727, 743, 757, 769
Offset: 1

Views

Author

Keywords

Comments

Primes p such that p^4 = 1 mod 210. - Gary Detlefs, Dec 29 2011
Primes in A047336, also in A113801. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Cf. A042989 (complement), A010051.

Programs

  • Haskell
    a045472 n = a045472_list !! (n-1)
    a045472_list = [x | x <- a047336_list, a010051 x == 1]
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [ p: p in PrimesUpTo(1000) | p mod 7 in {1,6} ]; // Vincenzo Librandi, Aug 13 2012
    
  • Mathematica
    Select[Prime[Range[200]],MemberQ[{1,6},Mod[#,7]]&] (* Vincenzo Librandi, Aug 13 2012 *)
  • PARI
    select(p->abs(centerlift(Mod(p,7)))==1, primes(100)) \\ Charles R Greathouse IV, Mar 17 2022

Formula

a(n) ~ 3n log n. - Charles R Greathouse IV, Mar 17 2022

A215354 Primes congruent to {0, 2, 3, 4, 5} mod 11.

Original entry on oeis.org

2, 3, 5, 11, 13, 37, 47, 59, 71, 79, 101, 103, 113, 137, 157, 167, 179, 181, 191, 211, 223, 233, 257, 269, 277, 311, 313, 367, 379, 389, 401, 409, 421, 431, 433, 443, 467, 487, 499, 509, 521, 541, 563, 577, 587, 599, 607, 619, 631, 641, 643, 653, 673, 709
Offset: 1

Views

Author

Vincenzo Librandi, Aug 09 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | p mod 11 in [0, 2, 3, 4, 5]];
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{0,2,3,4,5},Mod[#,11]]&]

A215355 Primes congruent to {0, 2, 3, 4, 5} mod 13.

Original entry on oeis.org

2, 3, 5, 13, 17, 29, 31, 41, 43, 67, 83, 107, 109, 173, 197, 199, 211, 223, 239, 251, 263, 277, 317, 353, 367, 379, 419, 421, 431, 433, 457, 499, 509, 523, 563, 577, 587, 601, 613, 641, 653, 691, 719, 733, 743, 757, 769, 797, 809, 811, 821, 823, 863, 887
Offset: 1

Views

Author

Vincenzo Librandi, Aug 09 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | p mod 13 in [0, 2, 3, 4, 5]];
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{0,2,3,4,5},Mod[#,13]]&]

A215356 Primes congruent to {0, 2, 3, 4, 5} mod 17.

Original entry on oeis.org

2, 3, 5, 17, 19, 37, 53, 71, 73, 89, 107, 139, 157, 173, 191, 223, 241, 257, 277, 293, 311, 359, 379, 461, 463, 479, 547, 563, 599, 617, 631, 683, 701, 719, 733, 751, 769, 787, 821, 853, 887, 937, 971, 991, 1039, 1091, 1093, 1109, 1193
Offset: 1

Views

Author

Vincenzo Librandi, Aug 09 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1200) | p mod 17 in [0, 2, 3, 4, 5]];
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{0,2,3,4,5},Mod[#,17]]&]

A215357 Primes congruent to {0, 2, 3, 4, 5} mod 19.

Original entry on oeis.org

2, 3, 5, 19, 23, 41, 43, 59, 61, 79, 97, 137, 157, 173, 193, 211, 233, 251, 269, 271, 307, 347, 383, 401, 421, 439, 461, 479, 499, 593, 613, 631, 727, 743, 821, 839, 857, 859, 877, 953, 971, 991, 1009, 1031, 1049, 1069, 1087, 1123, 1163, 1181, 1201
Offset: 1

Views

Author

Vincenzo Librandi, Aug 09 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | p mod 19 in [0, 2, 3, 4, 5]];
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{0,2,3,4,5},Mod[#,19]]&]
Showing 1-5 of 5 results.