A043303 Numerator of B(4n+2)/(2n+1) where B(m) are the Bernoulli numbers.
1, 1, 1, 1, 43867, 77683, 657931, 1723168255201, 151628697551, 154210205991661, 1520097643918070802691, 25932657025822267968607, 19802288209643185928499101, 29149963634884862421418123812691, 2913228046513104891794716413587449, 396793078518930920708162576045270521
Offset: 0
References
- Bruce Berndt, Ramanujan's Notebooks Part II, Springer-Verlag; see Infinite series, p. 262.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..156
Programs
-
Maple
seq(numer(bernoulli(4*n+2)/(2*n+1)),n=0..30); # Robert Israel, Sep 18 2016
-
Mathematica
Table[BernoulliB[4n+2]/(2n+1),{n,0,20}]//Numerator (* Harvey P. Dale, Aug 13 2018 *)
-
PARI
a(n)=if(n<0,0,numerator(bernfrac(4*n+2)/(2*n+1)))
Formula
B(4*n+2)/(8*n+4) = Sum_{k>=1} k^(4*n+1)/(exp(2*Pi*k)-1).
a(n) = A001067(2n+1).
Comments