cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A043307 a(n) = A033001(n)/4.

Original entry on oeis.org

1, 2, 9, 11, 18, 19, 82, 83, 99, 100, 163, 164, 171, 173, 738, 740, 747, 748, 892, 893, 900, 902, 1467, 1469, 1476, 1477, 1540, 1541, 1557, 1558, 6643, 6644, 6660, 6661, 6724, 6725, 6732, 6734, 8028, 8030, 8037, 8038, 8101, 8102, 8118, 8119
Offset: 1

Views

Author

Keywords

Comments

Also: Numbers which, written in base 9, have only digits 0, 1 or 2, and no two adjacent digits equal. - M. F. Hasler, Feb 03 2014

Crossrefs

Programs

  • Maple
    A[1]:= [1,2]:
    for d from 2 to 6 do
      A[d]:= map(t -> seq(9*t+j,j=subs(t mod 9 = NULL, [0,1,2])), A[d-1])
    od:
    seq(op(A[d]),d=1..6); # Robert Israel, Jan 29 2017
  • Mathematica
    Table[FromDigits[#,9]&/@Select[Tuples[{0,1,2},n],Min[Abs[Differences[#]]]>0&],{n,2,5}]// Flatten// Union (* Harvey P. Dale, May 27 2023 *)
  • PARI
    is_A043307(n)=(n=[n])&&!until(!n[1],((n=divrem(n[1],9))[2]<3 && n[1]%3!=n[2])||return) \\ M. F. Hasler, Feb 03 2014
    
  • PARI
    a(n) = my(v=binary(n+1)); v[1]=0; for(i=2,#v, v[i]+=(v[i]>=v[i-1])); fromdigits(v,9); \\ Kevin Ryde, Mar 13 2021

Formula

From Robert Israel, Jan 29 2017: (Start)
If a(n) == 0 (mod 3) then a(2*n+1) = 9*a(n) + 1 else a(2*n+1) = 9*a(n).
If a(n) == 2 (mod 3) then a(2*n+2) = 9*a(n) + 1 else a(2*n+1) = 9*a(n)+2.
a(4k+5) = 9*a(2k+2).
(End)