cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A033001 Every run of digits of n in base 3 has length 2.

Original entry on oeis.org

4, 8, 36, 44, 72, 76, 328, 332, 396, 400, 652, 656, 684, 692, 2952, 2960, 2988, 2992, 3568, 3572, 3600, 3608, 5868, 5876, 5904, 5908, 6160, 6164, 6228, 6232, 26572, 26576, 26640, 26644, 26896, 26900, 26928, 26936, 32112, 32120
Offset: 1

Views

Author

Keywords

Comments

See A043291 for the base 2 version (which has a very simple formula), A033002 - A033014 for bases 4 through 16, A033015 - A033029 for the variants with runs of length >= 2. - M. F. Hasler, Feb 01 2014

Programs

  • Mathematica
    Select[Range[10000], Union[Length/@Split[IntegerDigits[#, 3]]]=={2}&] (* Vincenzo Librandi, Feb 05 2014 *)
  • PARI
    is_A033001(n)=!until(!n\=9,bittest(4588304,n%27)||return)
    
  • PARI
    for(n=1,9999,is_A033001(n)&&print1(n",")) \\ (End)
    
  • PARI
    a(n) = my(v=binary(n+1)); v[1]=0; for(i=2,#v, v[i]+=(v[i]>=v[i-1])); 4*fromdigits(v,9); \\ Kevin Ryde, Mar 13 2021

Formula

a(n)=4*A043307(n). - M. F. Hasler, Feb 01 2014

A043320 Numbers which, written in base 256, have all digits less than 16 and no two adjacent digits equal.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 256, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 768, 769, 770, 772, 773, 774
Offset: 1

Views

Author

Keywords

Comments

Sequence A033014 consists of the numbers that have all base 16 digits repeated *exactly* twice. (This is equivalent to say that the base-256 digits are 0x00, 0x11, 0x22,... or 0xFF, in hex notation, and no two adjacent base-256 digits are equal.) Thus, these numbers are divisible by 0x11 = 17, and the result of the division is a number which has no other base-256 digits than 0x00, 0x01,... or 0x0F, and no two adjacent digits equal. Conversely, it is clear that exactly these numbers are terms of A033014 when multiplied by 17 = 0x11. - M. F. Hasler, Feb 05 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[20000], Union[Length/@Split[IntegerDigits[#, 16]]]=={2}&]/17 (* Vincenzo Librandi, Feb 06 2014 *)
  • PARI
    is_A043320(n)={(n=[n])&&!until(!n[1], ((n=divrem(n[1], 256))[2]<16 && n[1]%16!=n[2])||return)} \\ M. F. Hasler, Feb 03 2014
    
  • Python
    from itertools import count, islice, groupby
    def A043320_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:set(len(list(g)) for k, g in groupby(hex(17*n)[2:]))=={2},count(max(startvalue,1)))
    A043320_list = list(islice(A043320_gen(),20)) # Chai Wah Wu, Mar 10 2023

Formula

a(n) = A033014(n)/17. [This was initially the definition of the sequence. - M. F. Hasler, Feb 03 2014]

Extensions

New definition by M. F. Hasler, Feb 03 2014

A043308 a(n)=A033002(n)/5.

Original entry on oeis.org

1, 2, 3, 16, 18, 19, 32, 33, 35, 48, 49, 50, 257, 258, 259, 288, 289, 291, 304, 305, 306, 513, 514, 515, 528, 530, 531, 560, 561, 562, 769, 770, 771, 784, 786, 787, 800, 801, 803, 4112, 4114, 4115, 4128, 4129, 4131, 4144, 4145
Offset: 1

Views

Author

Keywords

Comments

Also: Numbers which, written in base 16, have all digits less than 4 and no two adjacent digits equal. - M. F. Hasler, Feb 03 2014

Crossrefs

Programs

  • PARI
    is_A043308(n)=(n=[n])&&!until(!n[1],((n=divrem(n[1],16))[2]<4 && n[1]%4!=n[2])||return) \\ M. F. Hasler, Feb 03 2014

A043312 a(n) = A033006(n)/9.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 64, 66, 67, 68, 69, 70, 71, 128, 129, 131, 132, 133, 134, 135, 192, 193, 194, 196, 197, 198, 199, 256, 257, 258, 259, 261, 262, 263, 320, 321, 322, 323, 324, 326, 327, 384, 385, 386, 387, 388, 389, 391, 448, 449
Offset: 1

Views

Author

Keywords

Comments

Also: Numbers which, written in base 64, have only digits 0 through 7, and no two adjacent digits equal. - M. F. Hasler, Feb 03 2014

Crossrefs

Programs

  • Maple
    f:= proc(n) local i;
          seq(64*n+i, i= subs(n mod 64 = NULL, [$0..7]))
    end proc:
    A:= $1..7: R:= [A]:
    for d from 2 to 3 do
      R:= map(f, R);
      A:= A, op(R);
    od:
    A; # Robert Israel, Jun 11 2019
  • PARI
    is_A043312(n)=(n=[n])&&!until(!n[1],((n=divrem(n[1],64))[2]<8 && n[1]%8!=n[2])||return) \\ M. F. Hasler, Feb 03 2014

A043317 a(n)=A033011(n)/14.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 338, 339, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 507, 508, 509, 511, 512, 513, 514, 515, 516, 517, 518, 519, 676, 677, 678
Offset: 1

Views

Author

Keywords

Comments

Also: Numbers which, written in base 169, have all digits less than 13 and no two adjacent digits equal. - M. F. Hasler, Feb 03 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[700],Max[IntegerDigits[#,169]]<13&&SequenceCount[ IntegerDigits[ #,169],{x_,x_}]==0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 07 2018 *)
  • PARI
    is_A043317(n)=(n=[n])&&!until(!n[1],((n=divrem(n,169))[2]<13 && n[2]!=n[1]%13)||return) \\ M. F. Hasler, Feb 03 2014

A043319 a(n)=A033013(n)/16.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 225, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 450, 451, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 675, 676, 677, 679, 680, 681, 682, 683, 684
Offset: 1

Views

Author

Keywords

Comments

Also: Numbers which, written in base 225, have all digits less than 15 and no two adjacent digits equal. - M. F. Hasler, Feb 03 2014

Crossrefs

Programs

  • PARI
    is_A043319(n)=(n=[n])&&!until(!n[1], ((n=divrem(n[1], 225))[2]<15 && n[1]%15!=n[2])||return) \\ M. F. Hasler, Feb 03 2014

A043309 a(n)=A033003(n)/6.

Original entry on oeis.org

1, 2, 3, 4, 25, 27, 28, 29, 50, 51, 53, 54, 75, 76, 77, 79, 100, 101, 102, 103, 626, 627, 628, 629, 675, 676, 678, 679, 700, 701, 702, 704, 725, 726, 727, 728, 1251, 1252, 1253, 1254, 1275, 1277, 1278, 1279, 1325, 1326, 1327, 1329
Offset: 1

Views

Author

Keywords

Comments

Also: Numbers which, written in base 25, have all digits less than 5 and no two adjacent digits equal. - M. F. Hasler, Feb 03 2014

Crossrefs

Programs

  • PARI
    is_A043309(n)=(n=[n])&&!until(!n[1],((n=divrem(n[1],25))[2]<5 && n[1]%5!=n[2])||return) \\ M. F. Hasler, Feb 03 2014

A043310 a(n)=A033004(n)/7.

Original entry on oeis.org

1, 2, 3, 4, 5, 36, 38, 39, 40, 41, 72, 73, 75, 76, 77, 108, 109, 110, 112, 113, 144, 145, 146, 147, 149, 180, 181, 182, 183, 184, 1297, 1298, 1299, 1300, 1301, 1368, 1369, 1371, 1372, 1373, 1404, 1405, 1406, 1408, 1409, 1440, 1441, 1442, 1443, 1445, 1476, 1477
Offset: 1

Views

Author

Keywords

Comments

Also: Numbers which, written in base 36, have all digits less than 6 and no two adjacent digits equal. - M. F. Hasler, Feb 03 2014

Crossrefs

Programs

  • PARI
    is_A043310(n)=(n=[n])&&!until(!n[1],((n=divrem(n[1],36))[2]<6 && n[1]%6!=n[2])||return) \\ M. F. Hasler, Feb 03 2014

Extensions

Definition corrected by and more terms from Georg Fischer, Mar 04 2021

A043311 a(n)=A033005(n)/8.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 49, 51, 52, 53, 54, 55, 98, 99, 101, 102, 103, 104, 147, 148, 149, 151, 152, 153, 196, 197, 198, 199, 201, 202, 245, 246, 247, 248, 249, 251, 294, 295, 296, 297, 298, 299, 2402, 2403, 2404, 2405, 2406, 2407, 2499
Offset: 1

Views

Author

Keywords

Comments

Numbers which, written in base 49, have only digits 0 through 6 and no two adjacent digits equal. - M. F. Hasler, Feb 03 2014

Crossrefs

Programs

  • PARI
    is_A043311(n)=(n=[n])&&!until(!n[1],((n=divrem(n[1],49))[2]<7 && n[1]%7!=n[2])||return) \\ M. F. Hasler, Feb 03 2014

A043313 a(n)=A033007(n)/10.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 81, 83, 84, 85, 86, 87, 88, 89, 162, 163, 165, 166, 167, 168, 169, 170, 243, 244, 245, 247, 248, 249, 250, 251, 324, 325, 326, 327, 329, 330, 331, 332, 405, 406, 407, 408, 409, 411, 412, 413, 486, 487, 488
Offset: 1

Views

Author

Keywords

Comments

Also: Numbers which, written in base 81, have only digits 0,...,8, and no two adjacent digits equal. - M. F. Hasler, Feb 03 2014

Crossrefs

Programs

  • PARI
    is_A043313(n)=(n=[n])&&!until(!n[1],((n=divrem(n[1],81))[2]<9 && n[1]%9!=n[2])||return) \\ M. F. Hasler, Feb 03 2014
Showing 1-10 of 14 results. Next