cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A143519 Moebius transform of A010051, the characteristic function of the primes: a(n) = Sum_{d|n} mu(n/d)*A010051(d); A054525 * A010051.

Original entry on oeis.org

0, 1, 1, -1, 1, -2, 1, 0, -1, -2, 1, 1, 1, -2, -2, 0, 1, 1, 1, 1, -2, -2, 1, 0, -1, -2, 0, 1, 1, 3, 1, 0, -2, -2, -2, 0, 1, -2, -2, 0, 1, 3, 1, 1, 1, -2, 1, 0, -1, 1, -2, 1, 1, 0, -2, 0, -2, -2, 1, -1, 1, -2, 1, 0, -2, 3, 1, 1, -2, 3, 1, 0, 1, -2, 1, 1, -2, 3, 1, 0, 0, -2, 1, -1, -2, -2, -2, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 22 2008

Keywords

Comments

A010051 = A051731 * A143519 (since A051731 = the inverse Mobius transform).
A000720(n) = Sum_{k=1..n} a(k) floor(n/k) where A000720(n) is the number of primes <= n. - Steven Foster Clark, May 25 2018

Examples

			a(4) = -1 since row 4 of triangle A043518 = (0, -1, 0, 0).
a(4) = -1 = (0, -1, 0, 1) dot (0, 1, 1, 0), where (0, -1, 0, 1) = row 4 of A054525 and A010051 = (0, 1, 1, 0, 1, 0, 1, 0, ...).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] Boole[PrimeQ@ d], {d, Divisors@ n}], {n, 89}] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    A143519(n) = sumdiv(n,d,isprime(d)*moebius(n/d)); \\ (After Luschny's Sage-code) - Antti Karttunen, Jul 19 2017
  • Sage
    def A143519(n) :
        D = filter(is_prime, divisors(n))
        return add(moebius(n/d) for d in D)
    [A143519(n) for n in (1..89)]   # Peter Luschny, Feb 01 2012
    

Formula

Mobius transform of A010051, the characteristic function of the primes.
Row sums of triangle A143518.
a(n) = Sum_{d|n} A010051(d)*A008683(n/d). - Antti Karttunen, Jul 19 2017
a(n) = Sum_{a*b*c=n} omega(a)*mu(b)*mu(c). - Benedict W. J. Irwin, Mar 02 2022

Extensions

More terms from R. J. Mathar, Jan 19 2009

A316868 Number of times 7 appears in decimal expansion of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Robert G. Wilson v, Jul 15 2018

Keywords

Examples

			a(0) = 0 since the decimal representation of 0 does not contain the digit 7.
a(7) = 1 since 7 appears once in the decimal expansion of 7.
		

Crossrefs

Programs

  • Mathematica
    Array[ DigitCount[#, 10, 7] &, 105, 0]
  • PARI
    a(n) = #select(x->x==7, digits(n)); \\ Michel Marcus, Jul 20 2018
Showing 1-2 of 2 results.