cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A001221 Number of distinct primes dividing n (also called omega(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 3, 2
Offset: 1

Views

Author

Keywords

Comments

From Peter C. Heinig (algorithms(AT)gmx.de), Mar 08 2008: (Start)
This is also the number of maximal ideals of the ring (Z/nZ,+,*). Since every finite integral domain must be a field, every prime ideal of Z/nZ is a maximal ideal and since in general each maximal ideal is prime, there are just as many prime ideals as maximal ones in Z/nZ, so the sequence gives the number of prime ideals of Z/nZ as well.
The reason why this number is given by the sequence is that the ideals of Z/nZ are precisely the subgroups of (Z/nZ,+). Hence for an ideal to be maximal it has form a maximal subgroup of (Z/nZ,+) and this is equivalent to having prime index in (Z/nZ) and this is equivalent to being generated by a single prime divisor of n.
Finally, all the groups arising in this way have different orders, hence are different, so the number of maximal ideals equals the number of distinct primes dividing n. (End)
Equals double inverse Mobius transform of A143519, where A051731 = the inverse Mobius transform. - Gary W. Adamson, Aug 22 2008
a(n) is the number of unitary prime power divisors of n (not including 1). - Jaroslav Krizek, May 04 2009 [corrected by Ilya Gutkovskiy, Oct 09 2019]
Sum_{d|n} 2^(-A001221(d) - A001222(n/d)) = Sum_{d|n} 2^(-A001222(d) - A001221(n/d)) = 1 (see Dressler and van de Lune link). - Michel Marcus, Dec 18 2012
Up to 2*3*5*7*11*13*17*19*23*29 - 1 = 6469693230 - 1, also the decimal expansion of the constant 0.01111211... = Sum_{k>=0} 1/(10 ^ A000040(k) - 1) (see A073668). - Eric Desbiaux, Jan 20 2014
The average order of a(n): Sum_{k=1..n} a(k) ~ Sum_{k=1..n} log log k. - Daniel Forgues, Aug 13-16 2015
From Peter Luschny, Jul 13 2023: (Start)
We can use A001221 and A001222 to classify the positive integers as follows.
A001222(n) = A001221(n) = 0 singles out {1}.
Restricting to n > 1:
A001222(n)^A001221(n) = 1: A000040, prime numbers.
A001221(n)^A001222(n) = 1: A246655, prime powers.
A001222(n)^A001221(n) > 1: A002808, the composite numbers.
A001221(n)^A001222(n) > 1: A024619, complement of A246655.
n^(A001222(n) - A001221(n)) = 1: A144338, products of distinct primes. (End)
Inverse Möbius transform of the characteristic function of primes (A010051). - Wesley Ivan Hurt, Jun 22 2024
Dirichlet convolution of A010051(n) and 1. - Wesley Ivan Hurt, Jul 15 2025

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, pp. 48-57.
  • J. Peters, A. Lodge and E. J. Ternouth, E. Gifford, Factor Table (n<100000) (British Association Mathematical Tables Vol.V), Burlington House/Cambridge University Press London 1935.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001222 (primes counted with multiplicity), A046660, A285577, A346617. Partial sums give A013939.
Sum of the k-th powers of the primes dividing n for k=0..10: this sequence (k=0), A008472 (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), A351196 (k=8), A351197 (k=9), A351198 (k=10).
Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k=0..10: this sequence (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Haskell
    import Math.NumberTheory.Primes.Factorisation (factorise)
    a001221 = length . snd . unzip . factorise
    -- Reinhard Zumkeller, Nov 28 2015
    
  • Julia
    using Nemo
    function NumberOfPrimeFactors(n; distinct=true)
        distinct && return length(factor(ZZ(n)))
        sum(e for (p, e) in factor(ZZ(n)); init=0)
    end
    println([NumberOfPrimeFactors(n) for n in 1:60]) # Peter Luschny, Jan 02 2024
  • Magma
    [#PrimeDivisors(n): n in [1..120]]; // Bruno Berselli, Oct 15 2021
    
  • Maple
    A001221 := proc(n) local t1, i; if n = 1 then return 0 else t1 := 0; for i to n do if n mod ithprime(i) = 0 then t1 := t1 + 1 end if end do end if; t1 end proc;
    A001221 := proc(n) nops(numtheory[factorset](n)) end proc: # Emeric Deutsch
    omega := n -> NumberTheory:-NumberOfPrimeFactors(n, 'distinct'): # Peter Luschny, Jun 15 2025
  • Mathematica
    Array[ Length[ FactorInteger[ # ] ]&, 100 ]
    PrimeNu[Range[120]]  (* Harvey P. Dale, Apr 26 2011 *)
  • MuPAD
    func(nops(numlib::primedivisors(n)), n):
    
  • MuPAD
    numlib::omega(n)$ n=1..110 // Zerinvary Lajos, May 13 2008
    
  • PARI
    a(n)=omega(n)
    
  • Python
    from sympy.ntheory import primefactors
    print([len(primefactors(n)) for n in range(1, 1001)])  # Indranil Ghosh, Mar 19 2017
    
  • Sage
    def A001221(n): return sum(1 for p in divisors(n) if is_prime(p))
    [A001221(n) for n in (1..80)] # Peter Luschny, Feb 01 2012
    
  • SageMath
    [sloane.A001221(n) for n in (1..111)] # Giuseppe Coppoletta, Jan 19 2015
    
  • SageMath
    [gp.omega(n) for n in range(1,101)] # G. C. Greubel, Jul 13 2024
    

Formula

G.f.: Sum_{k>=1} x^prime(k)/(1-x^prime(k)). - Benoit Cloitre, Apr 21 2003; corrected by Franklin T. Adams-Watters, Sep 01 2009
Dirichlet generating function: zeta(s)*primezeta(s). - Franklin T. Adams-Watters, Sep 11 2005
Additive with a(p^e) = 1.
a(1) = 0, a(p) = 1, a(pq) = 2, a(pq...z) = k, a(p^k) = 1, where p, q, ..., z are k distinct primes and k natural numbers. - Jaroslav Krizek, May 04 2009
a(n) = log_2(Sum_{d|n} mu(d)^2). - Enrique Pérez Herrero, Jul 09 2012
a(A002110(n)) = n, i.e., a(prime(n)#) = n. - Jean-Marc Rebert, Jul 23 2015
a(n) = A091221(A091202(n)) = A069010(A156552(n)). - Antti Karttunen, circa 2004 & Mar 06 2017
L.g.f.: -log(Product_{k>=1} (1 - x^prime(k))^(1/prime(k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
a(n) = log_2(Sum_{k=1..n} mu(gcd(n,k))^2/phi(n/gcd(n,k))) = log_2(Sum_{k=1..n} mu(n/gcd(n,k))^2/phi(n/gcd(n,k))), where phi = A000010 and mu = A008683. - Richard L. Ollerton, May 13 2021
Sum_{k=1..n} 2^(-a(gcd(n,k)) - A001222(n/gcd(n,k)))/phi(n/gcd(n,k)) = Sum_{k=1..n} 2^(-A001222(gcd(n,k)) - a(n/gcd(n,k)))/phi(n/gcd(n,k)) = 1, where phi = A000010. - Richard L. Ollerton, May 13 2021
a(n) = A005089(n) + A005091(n) + A059841(n) = A005088(n) +A005090(n) +A079978(n). - R. J. Mathar, Jul 22 2021
From Wesley Ivan Hurt, Jun 22 2024: (Start)
a(n) = Sum_{p|n, p prime} 1.
a(n) = Sum_{d|n} c(d), where c = A010051. (End)

A000720 pi(n), the number of primes <= n. Sometimes called PrimePi(n) to distinguish it from the number 3.14159...

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 21, 21
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A010051 (characteristic function of primes). - Jeremy Gardiner, Aug 13 2002
pi(n) and prime(n) are inverse functions: a(A000040(n)) = n and A000040(n) is the least number m such that A000040(a(m)) = A000040(n). A000040(a(n)) = n if (and only if) n is prime. - Jonathan Sondow, Dec 27 2004
See the additional references and links mentioned in A143227. - Jonathan Sondow, Aug 03 2008
A lower bound that gets better with larger N is that there are at least T prime numbers less than N, where the recursive function T is: T = N - N*Sum_{i=0..T(sqrt(N))} A005867(i)/A002110(i). - Ben Paul Thurston, Aug 23 2010
Number of partitions of 2n into exactly two parts with the smallest part prime. - Wesley Ivan Hurt, Jul 20 2013
Equivalent to the Riemann hypothesis: abs(a(n) - li(n)) < sqrt(n)*log(n)/(8*Pi), for n >= 2657, where li(n) is the logarithmic integral (Lowell Schoenfeld). - Ilya Gutkovskiy, Jul 05 2016
The second Hardy-Littlewood conjecture, that pi(x) + pi(y) >= pi(x + y) for integers x and y with min{x, y} >= 2, is known to hold for (x, y) sufficiently large (Udrescu 1975). - Peter Luschny, Jan 12 2021

Examples

			There are 3 primes <= 6, namely 2, 3 and 5, so pi(6) = 3.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, p. 8.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; p. 129.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 409.
  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 5.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Theorems 6, 7, 420.
  • G. J. O. Jameson, The Prime Number Theorem, Camb. Univ. Press, 2003. [See also the review by D. M. Bressoud (link below).]
  • Władysław Narkiewicz, The Development of Prime Number Theory, Springer-Verlag, 2000.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 132-133, 157-184.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section VII.1. (For inequalities, etc.).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Gerald Tenenbaum and Michel Mendès France, Prime Numbers and Their Distribution, AMS Providence RI, 1999.
  • V. Udrescu, Some remarks concerning the conjecture pi(x + y) <= pi(x) + pi(y), Rev. Roumaine Math. Pures Appl. 20 (1975), 1201-1208.

Crossrefs

Closely related:
A099802: Number of primes <= 2n.
A060715: Number of primes between n and 2n (exclusive).
A035250: Number of primes between n and 2n (inclusive).
A038107: Number of primes < n^2.
A014085: Number of primes between n^2 and (n+1)^2.
A007053: Number of primes <= 2^n.
A036378: Number of primes p between powers of 2, 2^n < p <= 2^(n+1).
A006880: Number of primes < 10^n.
A006879: Number of primes with n digits.
A033270: Number of odd primes <= n.
A065855: Number of composites <= n.
For lists of large values of a(n) see, e.g., A005669(n) = a(A002386(n)), A214935(n) = a(A205827(n)).
Related sequences:
Primes (p) and composites (c): A000040, A002808, A065855.
Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.
Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

Programs

  • Haskell
    a000720 n = a000720_list !! (n-1)
    a000720_list = scanl1 (+) a010051_list  -- Reinhard Zumkeller, Sep 15 2011
    
  • Magma
    [ #PrimesUpTo(n): n in [1..200] ];  // Bruno Berselli, Jul 06 2011
    
  • Maple
    with(numtheory); A000720 := pi; [ seq(A000720(i),i=1..50) ];
  • Mathematica
    A000720[n_] := PrimePi[n]; Table[ A000720[n], {n, 1, 100} ]
    Array[ PrimePi[ # ]&, 100 ]
    Accumulate[Table[Boole[PrimeQ[n]],{n,100}]] (* Harvey P. Dale, Jan 17 2015 *)
  • PARI
    A000720=vector(100,n,omega(n!)) \\ For illustration only; better use A000720=primepi
    
  • PARI
    vector(300,j,primepi(j)) \\ Joerg Arndt, May 09 2008
    
  • Python
    from sympy import primepi
    for n in range(1,100): print(primepi(n), end=', ') # Stefano Spezia, Nov 30 2018
  • Sage
    [prime_pi(n) for n in range(1, 79)]  # Zerinvary Lajos, Jun 06 2009
    

Formula

The prime number theorem gives the asymptotic expression a(n) ~ n/log(n).
For x > 1, pi(x) < (x / log x) * (1 + 3/(2 log x)). For x >= 59, pi(x) > (x / log x) * (1 + 1/(2 log x)). [Rosser and Schoenfeld]
For x >= 355991, pi(x) < (x / log(x)) * (1 + 1/log(x) + 2.51/(log(x))^2 ). For x >= 599, pi(x) > (x / log(x)) * (1 + 1/log(x)). [Dusart]
For x >= 55, x/(log(x) + 2) < pi(x) < x/(log(x) - 4). [Rosser]
For n > 1, A138194(n) <= a(n) <= A138195(n) (Tschebyscheff, 1850). - Reinhard Zumkeller, Mar 04 2008
For n >= 33, a(n) = 1 + Sum_{j=3..n} ((j-2)! - j*floor((j-2)!/j)) (Hardy and Wright); for n >= 1, a(n) = n - 1 + Sum_{j=2..n} (floor((2 - Sum_{i=1..j} (floor(j/i)-floor((j-1)/i)))/j)) (Ruiz and Sondow 2000). - Benoit Cloitre, Aug 31 2003
a(n) = A001221(A000142(n)). - Benoit Cloitre, Jun 03 2005
G.f.: Sum_{p prime} x^p/(1-x) = b(x)/(1-x), where b(x) is the g.f. for A010051. - Franklin T. Adams-Watters, Jun 15 2006
a(n) = A036234(n) - 1. - Jaroslav Krizek, Mar 23 2009
From Enrique Pérez Herrero, Jul 12 2010: (Start)
a(n) = Sum_{i=2..n} floor((i+1)/A000203(i)).
a(n) = Sum_{i=2..n} floor(A000010(n)/(i-1)).
a(n) = Sum_{i=2..n} floor(2/A000005(n)). (End)
Let pf(n) denote the set of prime factors of an integer n. Then a(n) = card(pf(n!/floor(n/2)!)). - Peter Luschny, Mar 13 2011
a(n) = -Sum_{p <= n} mu(p). - Wesley Ivan Hurt, Jan 04 2013
a(n) = (1/2)*Sum_{p <= n} (mu(p)*d(p)*sigma(p)*phi(p)) + sum_{p <= n} p^2. - Wesley Ivan Hurt, Jan 04 2013
a(1) = 0 and then, for all k >= 1, repeat k A001223(k) times. - Jean-Christophe Hervé, Oct 29 2013
a(n) = n/(log(n) - 1 - Sum_{k=1..m} A233824(k)/log(n)^k + O(1/log(n)^{m+1})) for m > 0. - Jonathan Sondow, Dec 19 2013
a(n) = A001221(A003418(n)). - Eric Desbiaux, May 01 2014
a(n) = Sum_{j=2..n} H(-sin^2 (Pi*(Gamma(j)+1)/j)) where H(x) is the Heaviside step function, taking H(0)=1. - Keshav Raghavan, Jun 18 2016
a(A014076(n)) = (1/2) * (A014076(n) + 1) - n + 1. - Christopher Heiling, Mar 03 2017
From Steven Foster Clark, Sep 25 2018: (Start)
a(n) = Sum_{m=1..n} A143519(m) * floor(n/m).
a(n) = Sum_{m=1..n} A001221(m) * A002321(floor(n/m)) where A002321() is the Mertens function.
a(n) = Sum_{m=1..n} |A143519(m)| * A002819(floor(n/m)) where A002819() is the Liouville Lambda summatory function and |x| is the absolute value of x.
a(n) = Sum_{m=1..n} A137851(m)/m * H(floor(n/m)) where H(n) = Sum_{m=1..n} 1/m is the harmonic number function.
a(n) = Sum_{m=1..log_2(n)} A008683(m) * A025528(floor(n^(1/m))) where A008683() is the Moebius mu function and A025528() is the prime-power counting function.
(End)
Sum_{k=2..n} 1/a(k) ~ (1/2) * log(n)^2 + O(log(n)) (de Koninck and Ivić, 1980). - Amiram Eldar, Mar 08 2021
a(n) ~ 1/(n^(1/n)-1). - Thomas Ordowski, Jan 30 2023
a(n) = Sum_{j=2..n} floor(((j - 1)! + 1)/j - floor((j - 1)!/j)) [Mináč, unpublished] (see Ribenboim, pp. 132-133). - Stefano Spezia, Apr 13 2025
a(n) = n - 1 - Sum_{k=2..floor(log_2(n))} pi_k(n), where pi_k(n) is the number of k-almost primes <= n. - Daniel Suteu, Aug 27 2025

Extensions

Additional links contributed by Lekraj Beedassy, Dec 23 2003
Edited by M. F. Hasler, Apr 27 2018 and (links recovered) Dec 21 2018

A010051 Characteristic function of primes: 1 if n is prime, else 0.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Keywords

Comments

The following sequences all have the same parity (with an extra zero term at the start of a(n)): a(n), A061007, A035026, A069754, A071574. - Jeremy Gardiner, Aug 09 2002
Hardy and Wright prove that the real number 0.011010100010... is irrational. See Nasehpour link. - Michel Marcus, Jun 21 2018
The spectral components (excluding the zero frequency) of the Fourier transform of the partial sequences {a(j)} with j=1..n and n an even number, exhibit a remarkable symmetry with respect to the central frequency component at position 1 + n/4. See the Fourier spectrum of the first 2^20 terms in Links, Comments in A289777, and Conjectures in A001223 of Sep 01 2019. It also appears that the symmetry grows with n. - Andres Cicuttin, Aug 23 2020

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 3.
  • V. Brun, Über das Goldbachsche Gesetz und die Anzahl der Primzahlpaare, Arch. Mat. Natur. B, 34, no. 8, 1915.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, London, 1975.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 65.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 132.

Crossrefs

Cf. A051006 (constant 0.4146825... (base 10) = 0.01101010001010001010... (base 2)), A001221 (inverse Moebius transform), A143519, A156660, A156659, A156657, A059500, A053176, A059456, A072762.
First differences of A000720, so A000720 gives partial sums.
Column k=1 of A117278.
Characteristic function of A000040.
Cf. A008683.

Programs

  • Haskell
    import Data.List (unfoldr)
    a010051 :: Integer -> Int
    a010051 n = a010051_list !! (fromInteger n-1)
    a010051_list = unfoldr ch (1, a000040_list) where
       ch (i, ps'@(p:ps)) = Just (fromEnum (i == p),
                                  (i + 1, if i == p then ps else ps'))
    -- Reinhard Zumkeller, Apr 17 2012, Sep 15 2011
    
  • Magma
    s:=[]; for n in [1..100] do if IsPrime(n) then s:=Append(s,1); else s:=Append(s,0); end if; end for; s;
    
  • Magma
    [IsPrime(n) select 1 else 0: n in [1..100]];  // Bruno Berselli, Mar 02 2011
    
  • Maple
    A010051:= n -> if isprime(n) then 1 else 0 fi;
  • Mathematica
    Table[ If[ PrimeQ[n], 1, 0], {n, 105}] (* Robert G. Wilson v, Jan 15 2005 *)
    Table[Boole[PrimeQ[n]], {n, 105}] (* Alonso del Arte, Aug 09 2011 *)
    Table[PrimePi[n] - PrimePi[n-1], {n,50}] (* G. C. Greubel, Jan 05 2017 *)
  • PARI
    a(n)=isprime(n) \\ Charles R Greathouse IV, Apr 16 2011
    
  • Python
    from sympy import isprime
    def A010051(n): return int(isprime(n)) # Chai Wah Wu, Jan 20 2022

Formula

a(n) = floor(cos(Pi*((n-1)! + 1)/n)^2) for n >= 2. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 07 2002
Let M(n) be the n X n matrix m(i, j) = 0 if n divides ij + 1, m(i, j) = 1 otherwise; then for n > 0 a(n) = -det(M(n)). - Benoit Cloitre, Jan 17 2003
n >= 2, a(n) = floor(phi(n)/(n - 1)) = floor(A000010(n)/(n - 1)). - Benoit Cloitre, Apr 11 2003
a(n) = Sum_{d|gcd(n, A034386(n))} mu(d). [Brun]
a(m*n) = a(m)*0^(n - 1) + a(n)*0^(m - 1). - Reinhard Zumkeller, Nov 25 2004
a(n) = 1 if n has no divisors other than 1 and n, and 0 otherwise. - Jon Perry, Jul 02 2005
Dirichlet generating function: Sum_{n >= 1} a(n)/n^s = primezeta(s), where primezeta is the prime zeta function. - Franklin T. Adams-Watters, Sep 11 2005
a(n) = (n-1)!^2 mod n. - Franz Vrabec, Jun 24 2006
a(n) = A047886(n, 1). - Reinhard Zumkeller, Apr 15 2008
Equals A051731 (the inverse Möbius transform) * A143519. - Gary W. Adamson, Aug 22 2008
a(n) = A051731((n + 1)! + 1, n) from Wilson's theorem: n is prime if and only if (n + 1)! is congruent to -1 mod n. - N-E. Fahssi, Jan 20 2009, Jan 29 2009
a(n) = A166260/A001477. - Mats Granvik, Oct 10 2009
a(n) = 0^A070824, where 0^0=1. - Mats Granvik, Gary W. Adamson, Feb 21 2010
It appears that a(n) = (H(n)*H(n + 1)) mod n, where H(n) = n!*Sum_{k=1..n} 1/k = A000254(n). - Gary Detlefs, Sep 12 2010
Dirichlet generating function: log( Sum_{n >= 1} 1/(A112624(n)*n^s) ). - Mats Granvik, Apr 13 2011
a(n) = A100995(n) - sqrt(A100995(n)*A193056(n)). - Mats Granvik, Jul 15 2011
a(n) * (2 - n mod 4) = A151763(n). - Reinhard Zumkeller, Oct 06 2011
(n - 1)*a(n) = ( (2*n + 1)!! * Sum_{k=1..n}(1/(2*k + 1))) mod n, n > 2. - Gary Detlefs, Oct 07 2011
For n > 1, a(n) = floor(1/A001222(n)). - Enrique Pérez Herrero, Feb 23 2012
a(n) = mu(n) * Sum_{d|n} mu(d)*omega(d), where mu is A008683 and omega A001222 or A001221 indistinctly. - Enrique Pérez Herrero, Jun 06 2012
a(n) = A003418(n+1)/A003418(n) - A217863(n+1)/A217863(n) = A014963(n) - A072211(n). - Eric Desbiaux, Nov 25 2012
For n > 1, a(n) = floor(A014963(n)/n). - Eric Desbiaux, Jan 08 2013
a(n) = ((abs(n-2))! mod n) mod 2. - Timothy Hopper, May 25 2015
a(n) = abs(F(n)) - abs(F(n)-1/2) - abs(F(n)-1) + abs(f(n)-3/2), where F(n) = Sum_{m=2..n+1} (abs(1 - (n mod m)) - abs(1/2 - (n mod m)) + 1/2), n > 0. F(n) = 1 if n is prime, > 1 otherwise, except F(1) = 0. a(n) = 1 if F(n) = 1, 0 otherwise. - Timothy Hopper, Jun 16 2015
For n > 4, a(n) = (n-2)! mod n. - Thomas Ordowski, Jul 24 2016
From Ilya Gutkovskiy, Jul 24 2016: (Start)
G.f.: A(x) = Sum_{n>=1} x^A000040(n) = B(x)*(1 - x), where B(x) is the g.f. for A000720.
a(n) = floor(2/A000005(n)), for n>1. (End)
a(n) = pi(n) - pi(n-1) = A000720(n) - A000720(n-1), for n>=1. - G. C. Greubel, Jan 05 2017
Decimal expansion of Sum_{k>=1} (1/10)^prime(k) = 9 * Sum_{k>=1} pi(k)/10^(k+1), where pi(k) = A000720(k). - Amiram Eldar, Aug 11 2020
a(n) = 1 - ceiling((2/n) * Sum_{k=2..floor(sqrt(n))} floor(n/k)-floor((n-1)/k)), n>1. - Gary Detlefs, Sep 08 2023
a(n) = Sum_{d|n} mu(d)*omega(n/d), where mu = A008683 and omega = A001221. - Ridouane Oudra, Apr 12 2025
a(n) = 0 if (n^2 - 3*n + 2) * A000203(n) - 8 * A002127(n) > 0 else 1 (n>2, see Craig link). - Bill McEachen, Jul 04 2025

A137851 a(n) = A054525(n) * A061397(n).

Original entry on oeis.org

0, 2, 3, -2, 5, -5, 7, 0, -3, -7, 11, 2, 13, -9, -8, 0, 17, 3, 19, 2, -10, -13, 23, 0, -5, -15, 0, 2, 29, 10, 31, 0, -14, -19, -12, 0, 37, -21, -16, 0, 41, 12, 43, 2, 3, -25, 47, 0, -7, 5, -20, 2, 53, 0, -16, 0, -22, -31, 59, -2, 61, -33, 3, 0, -18, 16, 67, 2, -26, 14, 71, 0, 73, -39, 5, 2, -18, 18, 79, 0, 0, -43, 83, -2, -22, -45, -32, 0
Offset: 1

Views

Author

Gary W. Adamson, Feb 14 2008

Keywords

Comments

Equals row sums of triangle A143517. - Gary W. Adamson, Aug 22 2008

Examples

			a(4) = -2 = (0, -1, 0, 1) dot (0, 2, 3, 0), where (0, -1, 0, 1) = row 4 of the Möbius triangle A054525 and (0, 2, 3, 0) = the first 4 terms of A061397.
		

Crossrefs

Programs

  • Maple
    A061397 := proc(n) if isprime(n) then n; else 0 ; fi ; end: A054525 := proc(n,k) if n mod k = 0 then numtheory[mobius](n/k); else 0; fi ; end: A137851 := proc(n) local k ; add(A061397(k)* A054525(n,k),k=1..n) ; end: seq(A137851(n),n=1..120) ; # R. J. Mathar, May 23 2008
  • Mathematica
    a[n_] := If[n == 1, 0, With[{p = FactorInteger[n][[All, 1]]}, p*MoebiusMu[n/p] // Total]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 13 2023 *)
  • Sage
    def A137851(n):
        return add(d*moebius(n//d) for d in divisors(n) if is_prime(d))
    [A137851(n) for n in (1..88)] # Peter Luschny, Feb 01 2012

Formula

A054525 * A061397 = Möbius transform of [0, 2, 3, 0, 5, 0, 7, 0, 0, 0, 11, 0, 13, ...].
Dirichlet g.f.: primezeta(s-1)/zeta(s). - Benedict W. J. Irwin, Jul 11 2018
a(n) = Sum_{p|n} p*mu(n/p), where p is prime. - Ridouane Oudra, Nov 12 2019

Extensions

More terms from R. J. Mathar, May 23 2008

A305735 Number of integer partitions of n whose greatest common divisor is a prime number.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 3, 2, 7, 1, 10, 1, 15, 8, 17, 1, 34, 1, 37, 16, 56, 1, 80, 6, 101, 27, 122, 1, 208, 1, 209, 57, 297, 20, 410, 1, 490, 102, 599, 1, 901, 1, 948, 194, 1255, 1, 1690, 14, 1985, 298, 2337, 1, 3327, 61, 3597, 491, 4565, 1, 6031, 1, 6842, 802
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2018

Keywords

Examples

			The a(10) = 7 integer partitions are (82), (64), (622), (55), (442), (4222), (22222).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],PrimeQ[GCD@@#]&]],{n,20}]
  • PARI
    seq(n)={dirmul(vector(n, n, numbpart(n)), dirmul(vector(n, n, moebius(n)), vector(n, n, isprime(n))))} \\ Andrew Howroyd, Jun 22 2018

Formula

a(n) = Sum_{d|n} A143519(d) * A000041(n/d). - Andrew Howroyd, Jun 22 2018

A143518 Triangle read by rows, A054525 * (A010051 * 0^(n-k)), 1<=k<=n.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 22 2008

Keywords

Comments

Row sums = A143519: (0, 1, 1, -1, 1, -2, 1, 0, -1,...)

Examples

			First few rows of the triangle =
0;
0, 1;
0, 0, 1;
0, -1, 0, 0;
0, 0, 0, 0, 1;
0, -1, -1, 0, 0, 0;
0, 0, 0, 0, 0, 0, 1;
...
		

Crossrefs

Formula

Triangle read by rows, A054525 * A010051, 1<=k<=n. A054525 = the Mobius transform. A010051 * 0^(n-k) = an infinite lower triangular matrix with A010051, the characteristic function of the primes (0, 1, 1, 0, 1, 0, 1,...) as the main diagonal and the rest zeros.

A369742 a(n) = Sum_{p|n, p prime} p^(mu(n/p)^2).

Original entry on oeis.org

0, 2, 3, 2, 5, 5, 7, 1, 3, 7, 11, 3, 13, 9, 8, 1, 17, 4, 19, 3, 10, 13, 23, 2, 5, 15, 1, 3, 29, 10, 31, 1, 14, 19, 12, 2, 37, 21, 16, 2, 41, 12, 43, 3, 4, 25, 47, 2, 7, 6, 20, 3, 53, 2, 16, 2, 22, 31, 59, 4, 61, 33, 4, 1, 18, 16, 67, 3, 26, 14, 71, 2, 73, 39, 6, 3, 18
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 30 2024

Keywords

Crossrefs

Cf. A008683 (mu), A143519.

Programs

  • Mathematica
    Table[DivisorSum[n, #^(MoebiusMu[n/#]^2) &, PrimeQ[#] &], {n, 100}]

Formula

a(p^k) = p for p prime and 1 <= k <= 2, else 1 if k >= 3. - Wesley Ivan Hurt, Jun 26 2024

A369864 a(n) = Sum_{p|n, p prime} n^(mu(n/p)^2).

Original entry on oeis.org

0, 2, 3, 4, 5, 12, 7, 1, 9, 20, 11, 13, 13, 28, 30, 1, 17, 19, 19, 21, 42, 44, 23, 2, 25, 52, 1, 29, 29, 90, 31, 1, 66, 68, 70, 2, 37, 76, 78, 2, 41, 126, 43, 45, 46, 92, 47, 2, 49, 51, 102, 53, 53, 2, 110, 2, 114, 116, 59, 62, 61, 124, 64, 1, 130, 198, 67, 69, 138
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 03 2024

Keywords

Crossrefs

Cf. A008683 (mu), A137851, A143519.

Programs

  • Mathematica
    Table[DivisorSum[n, n^(MoebiusMu[n/#]^2) &, PrimeQ[#] &], {n, 100}]

Formula

a(p^k) = p^k, for p prime and 1 <= k <= 2, else 1 if k >= 3. - Wesley Ivan Hurt, Jun 26 2024

A369865 a(n) = n * Sum_{p|n, p prime} mu(n/p)^2 / p.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 0, 3, 7, 1, 6, 1, 9, 8, 0, 1, 6, 1, 10, 10, 13, 1, 0, 5, 15, 0, 14, 1, 31, 1, 0, 14, 19, 12, 0, 1, 21, 16, 0, 1, 41, 1, 22, 15, 25, 1, 0, 7, 10, 20, 26, 1, 0, 16, 0, 22, 31, 1, 30, 1, 33, 21, 0, 18, 61, 1, 34, 26, 59, 1, 0, 1, 39, 15, 38, 18, 71, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*DivisorSum[n, (MoebiusMu[n/#]^2)/# &, PrimeQ[#] &], {n, 100}]

Formula

a(p^k) = p^(k-1) for p prime and 1 <= k <= 2, else 0 if k >= 3. - Wesley Ivan Hurt, Jun 26 2024
Showing 1-9 of 9 results.