cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A225550 Primes p such that p^2 mod 37 is prime.

Original entry on oeis.org

23, 59, 83, 89, 97, 139, 157, 163, 199, 281, 311, 347, 379, 421, 467, 503, 509, 541, 569, 577, 601, 607, 643, 823, 829, 911, 947, 953, 971, 977, 1013, 1021, 1051, 1087, 1193, 1249, 1429, 1471, 1489, 1531, 1613, 1619, 1637, 1693, 1753, 1873, 1901, 1933, 2063, 2081, 2087, 2131, 2137, 2161, 2243, 2309, 2377, 2383, 2531
Offset: 1

Views

Author

Zak Seidov, May 10 2013

Keywords

Comments

Or, primes p == {9, 14, 15, 22, 23, 28} (mod 37).
Corresponding values p^2 (mod 37): 11, 3, 7, 3, 11, 7, 7, 3, 11, 3, 3, 11, 7, 11, 11, 3, 7.

Examples

			23^2 = 529 and 529 mod 37 = 11 (prime).
		

Crossrefs

Cf. A045432.

Programs

  • Magma
    [p: p in PrimesUpTo(3000) | IsPrime(p^2 mod 37)]; // Bruno Berselli, May 10 2013
  • Mathematica
    Select[Prime[Range[2400]], PrimeQ[PowerMod[#, 2, 37]] &]
  • PARI
    forprime (p = 2, 2351, isprime (p^2 %37) & print1 (p ", "))
    

Formula

a(n) ~ 6n log n. - Charles R Greathouse IV, May 10 2013
Showing 1-1 of 1 results.