cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045445 Number of nonisomorphic systems of catafusenes for the unsymmetrical schemes (group C_s) with two appendages (see references for precise definition).

Original entry on oeis.org

0, 1, 6, 29, 132, 590, 2628, 11732, 52608, 237129, 1074510, 4893801, 22395420, 102943815, 475139070, 2201301575, 10234016880, 47731093715, 223273611810, 1047265325255, 4924606035900, 23211459517120, 109642275853176, 518959629394294, 2460993383491632, 11691102386417575
Offset: 1

Views

Author

Keywords

Comments

Number of 3-Motzkin paths of length n (i.e., lattice paths from (0,0) to (n,0) that do not go below the line y = 0 and consist of steps U = (1,1), D = (1,-1) and three types of steps H = (1,0)) that start with a U step. Example: a(4) = 29 because we have UDUD, UUDD, 9 UDHH paths, 9 UHDH paths and 9 UHHD paths. - Emeric Deutsch, Mar 26 2004
Here, n is the total number of hexagons in the system, which is usually denoted by h in most of the references below. In Cyvin, Brunvoll, and Cyvin (1992), Table 1, p. 28, it seems that the rooted hexagon is "distinguished", and the sequence is shifted by 1. - Petros Hadjicostas, May 26 2019

Crossrefs

Cf. A002212, A045829 (auto-convolution), A002057.

Programs

  • Maple
    a := n -> binomial(2*n+2,n+1)/(n+2) + add(binomial(2*k,k)*binomial(n-1,k-1)*(3*k-2*n-3)/(n-k+1)/(k+1),k=1..n): 0,seq(a(n),n=2..23);
    # Alternative:
    a := n -> (2*(n - 1)/(n + 2))*(binomial(2*n, n) / (n + 1))*hypergeom([-n-2, -n+2], [-n + 1/2], -1/4): seq(simplify(a(n)), n = 1..26); # Peter Luschny, Oct 23 2022
  • Mathematica
    a[n_] = Binomial[2n+2, n+1]/(n+2) + Sum[Binomial[2k, k]*Binomial[n-1, k-1]*(3k-2n-3)/(n-k+1)/(k+1), {k, 1, n}];
    a /@ Range[23] (* Jean-François Alcover, Jul 13 2011, after Maple *)
    Table[SeriesCoefficient[(1/2)*(7*x^2-6*x+1+(3*x-1)*Sqrt[5*x^2-6*x+1])/x^2,{x,0,n}],{n,1,23}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    x='x+O('x^66); concat([0],Vec((1/2)*(7*x^2-6*x+1+(3*x-1)*sqrt(5*x^2-6*x+1))/x^2)) \\ Joerg Arndt, May 04 2013

Formula

G.f.: (1/2)*(7*x^2 - 6*x + 1 + (3*x-1)*sqrt(5*x^2-6*x+1))/x^2. - Vladeta Jovovic, Jul 19 2001
a(n) = A002212(n+1) - 3*A002212(n). Convolution of A002212 without the first term with itself. - Emeric Deutsch, Jul 24 2002
a(n) = binomial(2n+2, n+1)/(n+2) + Sum_{k=1..n} binomial(2k, k)*binomial(n-1, k-1)*(3k-2n-3)/((n-k+1)*(k+1)) (n >= 2). - Emeric Deutsch, Mar 26 2004
Recurrence: (n-2)*(n+2)*a(n) = 3*(n-1)*(2*n-1)*a(n-1) - 5*(n-2)*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 5^(n+1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
a(n) = (2/(n+1))*Sum_{m=0..n-1} C(n+1,m)*C(2*n-2*m+2,n-m-1). - Vladimir Kruchinin Oct 18 2022
Let h(n) = hypergeom([-n-2, -n+2], [-n+1/2], -1/4) then a(n) = A002057(n-2)*h(n) = (2*(n-1)/(n+2))*CatalanNumber(n)*h(n). - Peter Luschny, Oct 23 2022

Extensions

More terms from Vladeta Jovovic, Jul 19 2001