cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045502 Numbers k such that 2*k+1 and 3*k+1 are squares.

Original entry on oeis.org

0, 40, 3960, 388080, 38027920, 3726348120, 365144087880, 35780394264160, 3506113493799840, 343563341998120200, 33665701402321979800, 3298895174085555900240, 323258061358982156243760, 31675991118006165755988280, 3103923871503245261930607720
Offset: 0

Views

Author

Fred Schwab (fschwab(AT)nrao.edu)

Keywords

Comments

Problem 1 for the 3rd grade of the 38th Mathematics Competition of the Republic of Slovenia (1998) was to prove that if k is a natural number such that 2*k+1 and 3*k+1 are perfect squares, then k is divisible by 40 (see link with solution Crux Mathematicorum and formula Mar 25 2021). - Bernard Schott, Mar 25 2021

Crossrefs

Programs

  • GAP
    a:=[0,40,3960];; for n in [4..15] do a[n]:=99*a[n-1]-99*a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Jul 17 2018
    
  • Magma
    I:=[0,40,3960]; [n le 3 select I[n] else 99*Self(n-1) -99*Self(n-2) + Self(n-3): n in [1..15]]; // G. C. Greubel, Jan 13 2020
    
  • Maple
    seq(coeff(series(40*x/((1-x)*(x^2-98*x+1)), x,n+1),x,n),n=0..15); # Muniru A Asiru, Jul 17 2018
  • Mathematica
    f[0]=0; f[1]=2; f[n_]:= f[n]= 10*f[n-1] -f[n-2]; a[n_]:= f[n]*f[n+1];
    CoefficientList[Series[40x/((1-x)(1-98x+x^2)), {x,0,15}], x] (* Michael De Vlieger, Jul 20 2018 *)
    Table[5*(ChebyshevT[n, 49] +48*ChebyshevU[n-1, 49] -1)/12, {n,0,15}] (* G. C. Greubel, Jan 13 2020 *)
    LinearRecurrence[{99,-99,1},{0,40,3960},20] (* Harvey P. Dale, Dec 02 2023 *)
  • PARI
    concat(0, Vec(40*x/((1-x)*(1-98*x+x^2))+O(x^20))) \\ Colin Barker, Mar 23 2017
    
  • Sage
    [4*chebyshev_U(n-1,5)*chebyshev_U(n,5) for n in (0..15)] # G. C. Greubel, Jan 13 2020

Formula

From Colin Barker, Mar 23 2017: (Start)
O.g.f.: 40*x / ((1 - x)*(1 - 98*x + x^2)).
a(n) = 99*a(n-1)- 99*a(n-2) + a(n-3) for n>2.
a(n) = (-10 + (5 - 2*sqrt(6))*(49 + 20*sqrt(6))^(-n) + (5 + 2*sqrt(6))*(49 + 20*sqrt(6))^n)/24. (End)
From G. C. Greubel, Jan 13 2020: (Start)
a(n) = 5*(ChebyshevT(n, 49) + 48*ChebyshevU(n-1, 48) - 1)/12.
a(n) = 4*ChebyshevU(n-1, 5)*ChebyshevU(n, 5). (End)
a(n) = 40*A278620(n). - Bernard Schott, Mar 25 2021