cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A045663 Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to complement.

Original entry on oeis.org

1, 2, 4, 6, 16, 30, 60, 126, 256, 504, 1020, 2046, 4080, 8190, 16380, 32730, 65536, 131070, 262080, 524286, 1048560, 2097018, 4194300, 8388606, 16776960, 33554400, 67108860, 134217216, 268435440, 536870910, 1073740740, 2147483646
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n==0, 1, 2n Total[MoebiusMu[#]*2^(n/#)& /@ Select[Divisors[n], OddQ]]/(2n)];
    a /@ Range[0, 31] (* Jean-François Alcover, Sep 23 2019 *)
  • PARI
    a(n)={if(n<1, n==0, sumdiv(n, d, if(d%2, moebius(d)*2^(n/d))))} \\ Andrew Howroyd, Sep 14 2019
    
  • Python
    from sympy import mobius, divisors
    def A045663(n): return sum(mobius(d)<>(~n&n-1).bit_length(),generator=True)) if n else 1 # Chai Wah Wu, Jul 22 2024

Formula

a(n) = 2*n*A000048(n) = n*A064355(n) for n > 0.
a(n) = Sum{d|n, d odd} mu(d) * 2^(n/d) for n > 0. - Andrew Howroyd, Sep 14 2019

A045664 Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to reversed complement.

Original entry on oeis.org

1, 2, 4, 18, 48, 150, 324, 882, 1920, 4536, 9900, 22506, 48240, 106470, 227556, 490950, 1044480, 2228190, 4708368, 9961434, 20950800, 44037378, 92229588, 192937938, 402549120, 838860000, 1744617420, 3623864832, 7515733680
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 0, 1, 2n Sum[MoebiusMu[n/d] 2^(d-1), {d, Divisors[n]}]];
    a /@ Range[0, 30] (* Jean-François Alcover, Sep 23 2019, from PARI *)
  • PARI
    a(n)={if(n<1, n==0, 2*n*sumdiv(n, d, moebius(n/d)*2^(d-1)))} \\ Andrew Howroyd, Sep 14 2019

Formula

For n >= 1, a(n) = n*A027375(n) = 2*n*A000740(n) = n^2*A001037(n).
a(n) = 2*n*Sum_{d|n} mu(n/d)*2^(d-1) for n > 0. - Andrew Howroyd, Sep 14 2019

A045665 Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to reverse, complement and reversed complement.

Original entry on oeis.org

1, 2, 4, 6, 16, 30, 36, 98, 128, 252, 300, 682, 720, 1638, 1764, 3690, 4096, 8670, 9072, 19418, 20400, 42630, 45012, 94162, 97920, 204600, 212940, 441504, 458640, 950214, 981900, 2031554, 2097152, 4323198, 4456380, 9174270, 9434880
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    a(n)={if(n<1, n==0, n*sumdiv(n, d, if(d%2, moebius(d)*2^((n/d+1)\2))))} \\ Andrew Howroyd, Oct 01 2019

Formula

a(n) = 2*n*A045683(n) for n > 0.
a(n) = n * Sum_{d|n, d odd} mu(d) * 2^ceiling(n/(2*d)) for n > 0.

A045653 Number of 2n-bead balanced binary strings, rotationally equivalent to reverse.

Original entry on oeis.org

1, 2, 6, 8, 38, 52, 216, 268, 1062, 1232, 4956, 5524, 21848, 24000, 95780, 102808, 410662, 437548, 1748592, 1847524, 7384988, 7759144, 31033404, 32449828, 129774936, 135207552, 540807104, 561629852, 2246432996, 2326762744, 9306937416, 9617286180, 38468731942
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    c(n)={sumdiv(n,d, moebius(d)*d)} \\ A023900
    a(n)={if(n<1, n==0, 2*sumdiv(n, d, c(n/d) * d * binomial(d-d%2, d\2)))} \\ Andrew Howroyd, Sep 15 2019

Formula

Inverse Moebius transform of A045662. - Andrew Howroyd, Sep 15 2019

Extensions

Terms a(30) and beyond from Andrew Howroyd, Sep 15 2019

A045666 Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally inequivalent to reverse, complement and reversed complement.

Original entry on oeis.org

0, 0, 0, 0, 0, 80, 384, 2352, 9856, 42840, 169280, 676720, 2630688, 10265216, 39777248, 154498200, 599556096, 2330826752, 9068386320, 35332969392, 137817005440, 538204062984, 2103970896544, 8233197139552, 32247052083840
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

a(n) = 2*n*A045684(n).
a(n) = A007727(n) - A045662(n) - A045663(n) - A045664(n) + 2*A045665(n). - Andrew Howroyd, Sep 14 2019

A045667 Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to reverse, inequivalent to complement and reversed complement.

Original entry on oeis.org

0, 0, 0, 0, 16, 20, 168, 168, 896, 972, 4600, 4840, 20880, 22360, 93744, 99060, 405504, 428876, 1738080, 1828104, 7359600, 7716240, 30982864, 32355664, 129654144, 135002900, 540570160, 561187116, 2245878544, 2325812528
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

a(n) = 2*n*A045685(n).
a(n) = A045662(n) - A045665(n). - Andrew Howroyd, Sep 14 2019
Showing 1-6 of 6 results.