A045655
Number of 2n-bead balanced binary strings, rotationally equivalent to reversed complement.
Original entry on oeis.org
1, 2, 6, 20, 54, 152, 348, 884, 1974, 4556, 10056, 22508, 48636, 106472, 228444, 491120, 1046454, 2228192, 4713252, 9961436, 20960904, 44038280, 92252100, 192937940, 402599676, 838860152, 1744723896, 3623869388, 7515962172
Offset: 0
a(2)= 6 because there are 6 such ordered pairs of length 2 binary sequences: (00,00),(11,11),(01,01),(10,10),(01,10),(10,01).
a(3)= 20 because the classes of 3-bit strings are 1*(000), 3*(001,010,100), 3*(011,110,101), 1*(111) = 1 + 9 + 9 + 1.
Cf.
A000031 counts the string classes.
-
f[n_] := 2*Plus @@ Table[ Length[ Union[ NestList[ RotateLeft, IntegerDigits[b, 2, n], n - 1]]], {b, 0, 2^(n - 1) - 1}]; f[0] = 1; Array[f, 21, 0] (* Olivier Gérard, Jan 01 2012 *)
-
c(n)={sumdiv(n,d, moebius(d)*d)} \\ A023900
a(n)={if(n<1, n==0, sumdiv(n, d, c(n/d)*d*2^d))} \\ Andrew Howroyd, Sep 15 2019
A045662
Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to reverse.
Original entry on oeis.org
1, 2, 4, 6, 32, 50, 204, 266, 1024, 1224, 4900, 5522, 21600, 23998, 95508, 102750, 409600, 437546, 1747152, 1847522, 7380000, 7758870, 31027876, 32449826, 129752064, 135207500, 540783100, 561628620, 2246337184, 2326762742
Offset: 0
-
a[n_] := If[n == 0, 1, 2n Sum[MoebiusMu[n/d] Binomial[d - Mod[d, 2], Quotient[d, 2]], {d, Divisors[n]}]];
a /@ Range[0, 30] (* Jean-François Alcover, Sep 23 2019, from PARI *)
-
a(n) = if(n<1, n==0, 2*n*sumdiv(n, d, moebius(n/d) * binomial(d-d%2, d\2))); \\ Andrew Howroyd, Sep 14 2019
A045663
Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to complement.
Original entry on oeis.org
1, 2, 4, 6, 16, 30, 60, 126, 256, 504, 1020, 2046, 4080, 8190, 16380, 32730, 65536, 131070, 262080, 524286, 1048560, 2097018, 4194300, 8388606, 16776960, 33554400, 67108860, 134217216, 268435440, 536870910, 1073740740, 2147483646
Offset: 0
-
a[n_] := If[n==0, 1, 2n Total[MoebiusMu[#]*2^(n/#)& /@ Select[Divisors[n], OddQ]]/(2n)];
a /@ Range[0, 31] (* Jean-François Alcover, Sep 23 2019 *)
-
a(n)={if(n<1, n==0, sumdiv(n, d, if(d%2, moebius(d)*2^(n/d))))} \\ Andrew Howroyd, Sep 14 2019
-
from sympy import mobius, divisors
def A045663(n): return sum(mobius(d)<>(~n&n-1).bit_length(),generator=True)) if n else 1 # Chai Wah Wu, Jul 22 2024
A045665
Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to reverse, complement and reversed complement.
Original entry on oeis.org
1, 2, 4, 6, 16, 30, 36, 98, 128, 252, 300, 682, 720, 1638, 1764, 3690, 4096, 8670, 9072, 19418, 20400, 42630, 45012, 94162, 97920, 204600, 212940, 441504, 458640, 950214, 981900, 2031554, 2097152, 4323198, 4456380, 9174270, 9434880
Offset: 0
-
a(n)={if(n<1, n==0, n*sumdiv(n, d, if(d%2, moebius(d)*2^((n/d+1)\2))))} \\ Andrew Howroyd, Oct 01 2019
A045669
Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to reversed complement, inequivalent to reverse and complement.
Original entry on oeis.org
0, 0, 0, 12, 32, 120, 288, 784, 1792, 4284, 9600, 21824, 47520, 104832, 225792, 487260, 1040384, 2219520, 4699296, 9942016, 20930400, 43994748, 92184576, 192843776, 402451200, 838655400, 1744404480, 3623423328, 7515275040
Offset: 0
A045666
Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally inequivalent to reverse, complement and reversed complement.
Original entry on oeis.org
0, 0, 0, 0, 0, 80, 384, 2352, 9856, 42840, 169280, 676720, 2630688, 10265216, 39777248, 154498200, 599556096, 2330826752, 9068386320, 35332969392, 137817005440, 538204062984, 2103970896544, 8233197139552, 32247052083840
Offset: 0
Showing 1-6 of 6 results.
Comments