cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045743 Number of noncrossing connected graphs on n nodes on a circle having no triangular faces.

Original entry on oeis.org

1, 3, 13, 66, 367, 2164, 13293, 84157, 545270, 3598244, 24100375, 163416748, 1119592052, 7738412716, 53894849437, 377851866954, 2664570714233, 18887568709788, 134501247038230, 961774761388430, 6903072966224220
Offset: 2

Views

Author

Keywords

Crossrefs

Column k=0 of A089435.
Cf. A045744.

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1-x*A^4/(1-3*A+A^2));polcoeff(A,n)} \\ Paul D. Hanna, Mar 09 2010
    
  • PARI
    a(n) = if(n>1, sum(i=0, floor(n/2)-1, binomial(n-2+i, i)*binomial(3*n-3-i, n-2-2*i))/(n-1)); \\ Andrew Howroyd, Nov 12 2017

Formula

a(n) = Sum_{i=0..floor((n-2)/2)} binomial(n-2+i, i)*binomial(3*n-3-i, n-2-2*i)/(n-1).
From Paul D. Hanna, Mar 09 2010: (Start)
G.f. A(x): Let F(x) = 1 + A(x)/x = 1 + x + 3*x^2 + 13*x^3 + 66*x^4 +...
then F(x) satisfies: x*F(x)^4 = (1 - F(x))*(1 - 3*F(x) + F(x)^2). (End)
Conjecture D-finite with recurrence 5*n*(n-1)*(n-2)*(1353818*n-3651663)*a(n) +16*(n-1)*(n-2)*(2236406*n^2-6864025*n+2014500)*a(n-1) -16*(n-2)*(46338048*n^3-326486432*n^2+734160494*n-506411475)*a(n-2) +8*(2*n-7)*(26592864*n^3-436441232*n^2+2071128458*n-3030735075)*a(n-3) +128*(94246*n-334675)*(4*n-19)*(2*n-9)*(4*n-17)*a(n-4)=0. - R. J. Mathar, Jul 26 2022