cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A045744 Number of noncrossing connected graphs on n nodes on a circle having no four-sided faces.

Original entry on oeis.org

1, 4, 22, 141, 988, 7337, 56749, 452332, 3689697, 30652931, 258465558, 2206330790, 19029531220, 165582392070, 1451789520435, 12813638048184, 113755675163767, 1015119850103821, 9100463691522759, 81923222827031025
Offset: 2

Views

Author

Keywords

Crossrefs

Column k=0 of A094046.
Cf. A045743.

Programs

  • PARI
    a(n) = if(n>1, sum(i=0, floor((n-2)/3), binomial(n-2+i, i)*binomial(4*n-4-i, n-2-3*i))/(n-1)); \\ Andrew Howroyd, Nov 12 2017

Formula

a(n) = Sum_{i=0..floor((n-2)/3)} binomial(n-2+i, i)*binomial(4*n-4-i, n-2-3*i)/(n-1).

A089435 Triangle read by rows: T(n,k) (n >= 2, k >= 0) is the number of non-crossing connected graphs on n nodes on a circle, having k triangles. Rows are indexed 2,3,4,...; columns are indexed 0,1,2,....

Original entry on oeis.org

1, 3, 1, 13, 8, 2, 66, 60, 25, 5, 367, 442, 255, 84, 14, 2164, 3248, 2380, 1064, 294, 42, 13293, 23904, 21192, 11832, 4410, 1056, 132, 84157, 176397, 183303, 122115, 56430, 18216, 3861, 429, 545270, 1305480, 1554850, 1200320, 657195, 262262, 75075
Offset: 2

Views

Author

Emeric Deutsch, Dec 28 2003

Keywords

Examples

			T(4,1)=8 because, considering the complete graph K_4 on the nodes A,B,C and D, we obtain a non-crossing connected graph on A,B,C,D, with exactly one triangle, by deleting one of the two diagonals and one of the four sides (8 possibilities).
Triangle starts:
    1;
    3,   1;
   13,   8,   2;
   66,  60,  25,   5;
  367, 442, 255,  84,  14;
  ...
		

Crossrefs

T(n, n-2) yields the Catalan numbers (A000108) corresponding to triangulations, T(n, 0) yields A045743, row sums yield A007297.

Programs

  • Mathematica
    t[n_, k_] = Binomial[n+k-2, k]*Sum[Binomial[n+k+i-2, i]*Binomial[3n-3-k-i, 2n-1+i], {i, 0, Floor[(n-k-2)/2]}]/(n-1) ;
    Flatten[Table[t[n, k], {n, 2, 10}, {k, 0, n-2}]][[1 ;; 43]] (* Jean-François Alcover, Jun 20 2011 *)
  • PARI
    T(n, k) = binomial(n+k-2, k)*sum(i=0,floor((n-k-2)/2),binomial(n+k+i-2, i)*binomial(3*n-3-k-i, 2*n-1+i))/(n-1); \\ Michel Marcus, Oct 26 2015

Formula

T(n, k) = binomial(n+k-2, k)*sum(binomial(n+k+i-2, i)*binomial(3*n-3-k-i, 2*n-1+i), i=0..floor((n-k-2)/2))/(n-1), n>=2, k>=0.
G.f.: G(t, z) satisfies G^4 + G^3 + (t-4)*z*G^2-2*(t-2)*z^2*G + (t-1)*z^3 = 0.

Extensions

Keyword tabl added by Michel Marcus, Apr 09 2013

A366070 Expansion of (1/x) * Series_Reversion( x*(1+x-x^2)/(1+x)^5 ).

Original entry on oeis.org

1, 4, 23, 155, 1143, 8932, 72682, 609348, 5227035, 45659020, 404756300, 3632075109, 32928392154, 301152242600, 2775117150576, 25741623112539, 240162703635495, 2252187478291088, 21217451539791085, 200709823787548845, 1905712342347978340
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n+k, k)*binomial(4*n-k+4, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(4*n-k+4,n-2*k).
Showing 1-3 of 3 results.