cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A045743 Number of noncrossing connected graphs on n nodes on a circle having no triangular faces.

Original entry on oeis.org

1, 3, 13, 66, 367, 2164, 13293, 84157, 545270, 3598244, 24100375, 163416748, 1119592052, 7738412716, 53894849437, 377851866954, 2664570714233, 18887568709788, 134501247038230, 961774761388430, 6903072966224220
Offset: 2

Views

Author

Keywords

Crossrefs

Column k=0 of A089435.
Cf. A045744.

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1-x*A^4/(1-3*A+A^2));polcoeff(A,n)} \\ Paul D. Hanna, Mar 09 2010
    
  • PARI
    a(n) = if(n>1, sum(i=0, floor(n/2)-1, binomial(n-2+i, i)*binomial(3*n-3-i, n-2-2*i))/(n-1)); \\ Andrew Howroyd, Nov 12 2017

Formula

a(n) = Sum_{i=0..floor((n-2)/2)} binomial(n-2+i, i)*binomial(3*n-3-i, n-2-2*i)/(n-1).
From Paul D. Hanna, Mar 09 2010: (Start)
G.f. A(x): Let F(x) = 1 + A(x)/x = 1 + x + 3*x^2 + 13*x^3 + 66*x^4 +...
then F(x) satisfies: x*F(x)^4 = (1 - F(x))*(1 - 3*F(x) + F(x)^2). (End)
Conjecture D-finite with recurrence 5*n*(n-1)*(n-2)*(1353818*n-3651663)*a(n) +16*(n-1)*(n-2)*(2236406*n^2-6864025*n+2014500)*a(n-1) -16*(n-2)*(46338048*n^3-326486432*n^2+734160494*n-506411475)*a(n-2) +8*(2*n-7)*(26592864*n^3-436441232*n^2+2071128458*n-3030735075)*a(n-3) +128*(94246*n-334675)*(4*n-19)*(2*n-9)*(4*n-17)*a(n-4)=0. - R. J. Mathar, Jul 26 2022

A094046 Triangle read by rows: T(n,k) (n>=2; 0<=k<=floor(n/2)-1) is the number of noncrossing connected graphs on n nodes on a circle, having exactly k four-sided faces.

Original entry on oeis.org

1, 4, 22, 1, 141, 15, 988, 171, 3, 7337, 1778, 77, 56749, 17758, 1300, 12, 452332, 173826, 18315, 435, 3689697, 1683055, 233695, 9680, 55, 30652931, 16195344, 2804637, 171226, 2574, 258465558, 155280489, 32306742, 2647580, 70980, 273
Offset: 2

Views

Author

Emeric Deutsch, May 31 2004

Keywords

Comments

T(2n,n-1) = A001764(n-1); T(n,0) = A045744(n).

Examples

			T(5,1)=15 because on the nodes A,B,C,D,E we have three connected noncrossing graphs having BCDE as the unique four-sided face: {AB,BC,CD,DE,EB}, {AE,BC,CD,DE,EB} and {AB,AE,BC,CD,DE,EB}; by circular permutations we obtain 5*3=15.
		

Programs

  • Maple
    T:=proc(n,k) if n=1 and k=0 then 1 elif n=1 and k>0 then 0 else binomial(n+k-2,k)*sum(binomial(n+k+i-2,i)*binomial(4*n-4-k-i,n-2*k-2-3*i),i=0..floor((n-2*k-2)/3))/(n-1) fi end: seq(seq(T(n,k),k=0..floor(n/2)-1),n=2..15);
  • Mathematica
    T[n_, k_] := Binomial[n+k-2, k] Sum[Binomial[n+k+i-2, i] Binomial[4n-4-k-i, n-2k-2-3i], {i, 0, (n-2k-2)/3}]/(n-1);
    Table[T[n, k], {n, 2, 15}, {k, 0, n/2-1}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)

Formula

T(n, k) = binomial(n+k-2, k)*sum(binomial(n+k+i-2, i)*binomial(4n-4-k-i, n-2k-2-3i), i=0..floor((n-2k-2)/3))/(n-1).
G.f. G=G(t, z) satisfies: G = z(1+G)^5/(1+G-G^3-tG^2).
Showing 1-2 of 2 results.