cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045820 Theta series of D8 lattice with respect to midpoint of edge.

Original entry on oeis.org

2, 24, 124, 368, 746, 1288, 2220, 3536, 4964, 6904, 9536, 12112, 15630, 20592, 24588, 29632, 37472, 43296, 50492, 61456, 68724, 79560, 95404, 104352, 118226, 137392, 148636, 167920, 191904, 204712
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A045822.

Programs

  • Mathematica
    terms = 30; List @@ Normal[(1/2)*EllipticTheta[2, 0, z]^2*EllipticTheta[3, 0, z]^6 + O[z]^terms] /. z -> 1 (* Jean-François Alcover, Jul 06 2017 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)]^4 EllipticTheta[ 3, 0, x]^4 / (8 Sqrt[x]), {x, 0, n}]; (* Michael Somos, Jul 24 2017 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); 2 * polcoeff( (eta( x^2 + A)^7 / (eta( x + A)^3 * eta( x^4 + A)^2))^4, n))}; /* Michael Somos, Jul 24 2017 */

Formula

G.f.: (1/2)*(theta_2^2*theta_3^6).
Expansion of q^(-1/2) * 2 * (eta(q^2)^7 / (eta(q)^3 * eta(q^4)^2))^4 in powers of q. - Michael Somos, Jul 24 2017