A045820 Theta series of D8 lattice with respect to midpoint of edge.
2, 24, 124, 368, 746, 1288, 2220, 3536, 4964, 6904, 9536, 12112, 15630, 20592, 24588, 29632, 37472, 43296, 50492, 61456, 68724, 79560, 95404, 104352, 118226, 137392, 148636, 167920, 191904, 204712
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A045822.
Programs
-
Mathematica
terms = 30; List @@ Normal[(1/2)*EllipticTheta[2, 0, z]^2*EllipticTheta[3, 0, z]^6 + O[z]^terms] /. z -> 1 (* Jean-François Alcover, Jul 06 2017 *) a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)]^4 EllipticTheta[ 3, 0, x]^4 / (8 Sqrt[x]), {x, 0, n}]; (* Michael Somos, Jul 24 2017 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); 2 * polcoeff( (eta( x^2 + A)^7 / (eta( x + A)^3 * eta( x^4 + A)^2))^4, n))}; /* Michael Somos, Jul 24 2017 */
Formula
G.f.: (1/2)*(theta_2^2*theta_3^6).
Expansion of q^(-1/2) * 2 * (eta(q^2)^7 / (eta(q)^3 * eta(q^4)^2))^4 in powers of q. - Michael Somos, Jul 24 2017