cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045821 Numerical distance between m-th and (n+m)-th circles in a loxodromic sequence of circles in which each 4 consecutive circles touch.

Original entry on oeis.org

-1, 1, 1, 1, 7, 17, 49, 145, 415, 1201, 3473, 10033, 28999, 83809, 242209, 700001, 2023039, 5846689, 16897249, 48833953, 141132743, 407881201, 1178798545, 3406791025, 9845808799, 28454915537, 82236232177, 237667122001
Offset: 0

Views

Author

Keywords

References

  • Coxeter, H. S. M. "Numerical distances among the circles in a loxodromic sequence." Nieuw Archief voor Wiskunde 16 (1998): 1-10. (Note the word "circles" in the title!)

Crossrefs

Cf. A027674.

Programs

  • GAP
    a:=[-1,1,1,1];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018
  • Maple
    with(combinat); F:=fibonacci;
    f:=n->add(F(n-i)*binomial(n,2*(i-2)), i=2..n-1);
    [seq(f(n),n=3..32)]; # Produces the sequence from a(3) onwards - N. J. A. Sloane, Sep 03 2018
  • Mathematica
    CoefficientList[Series[-(x^3-x^2-3*x+1)/(x^4-2*x^3-2*x^2-2*x+1), {x, 0, 30}], x] (* Stefano Spezia, Sep 12 2018 *)
  • PARI
    Vec(-(x^3-x^2-3*x+1)/(x^4-2*x^3-2*x^2-2*x+1) + O(x^100)) \\ Colin Barker, Sep 23 2013
    

Formula

a(n) = 2(a(n-1)+a(n-2)+a(n-3))-a(n-4).
a(n) = Sum{v=0 to [n/2]} binomial(n, 2v)*F(n-v-2) where F(m) is the m-th Fibonacci number.
G.f.: -(x^3-x^2-3*x+1) / (x^4-2*x^3-2*x^2-2*x+1). - Colin Barker, Sep 23 2013
Lim_{n -> inf} a(n)/a(n-1) = A318605. - A.H.M. Smeets, Sep 12 2018

Extensions

Reference and formulas from Floor van Lamoen