cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045836 Half of theta series of b.c.c. lattice with respect to long edge.

Original entry on oeis.org

1, 2, 0, 0, 4, 4, 0, 0, 5, 4, 0, 0, 4, 8, 0, 0, 8, 6, 0, 0, 8, 4, 0, 0, 5, 12, 0, 0, 12, 8, 0, 0, 8, 8, 0, 0, 4, 12, 0, 0, 16, 8, 0, 0, 12, 8, 0, 0, 9, 14, 0, 0, 12, 16, 0, 0, 8, 4, 0, 0, 12, 16, 0, 0, 16, 16, 0, 0, 16, 8, 0, 0, 8, 20, 0, 0, 16, 8, 0, 0, 17
Offset: 1

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The body-centered cubic (b.c.c. also known as D3*) lattice is the set of all triples [a, b, c] where the entries are all integers or all one half an odd integer. A long edge is centered at a triple with two integer entries and the remaining entry is one half an odd integer. - Michael Somos, May 31 2012

Examples

			q + 2*q^2 + 4*q^5 + 4*q^6 + 5*q^9 + 4*q^10 + 4*q^13 + 8*q^14 + 8*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[QPochhammer[x^2+A]^5 * (QPochhammer[x^8+A]^4 / (QPochhammer[x+A]^2*QPochhammer[x^4+A]^4)), {x, 0, n}]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 05 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A)^4 / (eta(x + A)^2 * eta(x^4 + A)^4), n))} /* Michael Somos, May 31 2012 */

Formula

From Michael Somos, May 31 2012: (Start)
Expansion of x * phi(x) * psi(x^4)^2 = x * psi(-x^2)^4 / phi(-x) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q^2)^5 * eta(q^8)^4 / (eta(q)^2 * eta(q^4)^4) in powers of q.
Euler transform of period 8 sequence [ 2, -3, 2, 1, 2, -3, 2, -3, ...].
a(4*n) = a(4*n + 3) = 0. a(n) = A004025(n) / 2. a(4*n + 1) = A045834(n). a(4*n + 2) = 2 * A045828(n). (End)