A045882 Smallest term of first run of (at least) n consecutive integers which are not squarefree.
4, 8, 48, 242, 844, 22020, 217070, 1092747, 8870024, 221167422, 221167422, 47255689915, 82462576220, 1043460553364, 79180770078548, 3215226335143218, 23742453640900972, 125781000834058568
Offset: 1
Examples
a(3) = 48 as 48, 49 and 50 are divisible by squares. n=5 -> {844=2^2*211; 845=5*13^2; 846=2*3^2*47; 847=7*11^2; 848=2^4*53}.
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 242, p. 67, Ellipses, Paris 2008.
Links
- L. Marmet, First occurrences of square-free gaps and an algorithm for their computation, arXiv preprint arXiv:1210.3829 [math.NT], 2012. See also the author page.
- "sikefield3", double-square (2019)
- Eric Weisstein's World of Mathematics, Squarefree numbers
- Eric Weisstein's World of Mathematics, Squareful
Crossrefs
Programs
-
Mathematica
cnt = 0; k = 0; Table[While[cnt < n, k++; If[! SquareFreeQ[k], cnt++, cnt = 0]]; k - n + 1, {n, 7}]
-
PARI
a(n)=my(s);for(k=1,9^99,if(issquarefree(k),s=0,if(s++==n,return(k-n+1)))) \\ Charles R Greathouse IV, May 29 2013
Formula
a(n) = 1 + A020754(n+1). - R. J. Mathar, Jun 25 2010
Correction from Jeppe Stig Nielsen, Mar 05 2022: (Start)
a(n) = 1 + A020754(n+1) for 1 <= n < 11.
a(n) = 1 + A020754(n) for 11 <= n < N where N is unknown.
Possibly a(n) = 1 + A020754(n-d) for some higher n, depending on how many repeated terms the sequence has. (End)
a(n) <= A061742(n) = A002110(n)^2 is the trivial bound obtained from the CRT. - Charles R Greathouse IV, Sep 06 2022
Extensions
a(9)-a(11) from Patrick De Geest, Nov 15 1998, Jan 15 1999
a(12)-a(15) from Louis Marmet (louis(AT)marmet.org) and David Bernier (ezcos(AT)yahoo.com), Nov 15 1999
a(16) was obtained as a result of a team effort by Z. McGregor-Dorsey et al. [Louis Marmet (louis(AT)marmet.org), Jul 27 2000]
a(17) was obtained as a result of a team effort by E. Wong et al. [Louis Marmet (louis(AT)marmet.org), Jul 13 2001]
a(18) was obtained as a result of a team effort by L. Marmet et al.
Comments