A045887 Number of distinct even numbers visible as proper subsequences of n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 2, 4, 2, 4
Offset: 0
Examples
a(10)=1 because we can form 0. a(24)=2 because we can form 2, 4. a(102)=4 because we can form 0, 2, 10, 12. a(124)=5 because we can form the following even numbers: 2, 4, 12, 14, 24.
Links
- Sean A. Irvine, Table of n, a(n) for n = 0..10000
- Sean A. Irvine, Java program (github)
Programs
-
Python
from itertools import combinations def a(n): s, eset = str(n), set() for i in range(len(s)): for j in range(i+1, len(s)+1): if s[j-1] in "02468": if len(s[i:j]) <= 2 and j-i < len(s): eset.add(int(s[i:j])) else: middle = s[i+1:j-1] for k in range(len(middle)+1): for c in combinations(middle, k): t = s[i] + "".join(c) + s[j-1] if len(t) < len(s): eset.add(int(t)) return len(eset) print([a(n) for n in range(105)]) # Michael S. Branicky, Mar 24 2021
Extensions
More terms from Fabian Rothelius, Feb 08 2001
a(102) and a(104) corrected by Reinhard Zumkeller, Jul 19 2011
a(102) and a(104) reverted to original values by Sean A. Irvine, Mar 23 2021