A045906 Numbers of nonisomorphic systems of catafusenes (see Cyvin et al. (1994) for precise definition).
1, 1, 4, 12, 51, 205, 907, 4000, 18048, 81719, 373104, 1710740, 7882346, 36457711, 169252176, 788326910, 3683071949, 17255713627, 81056265252, 381668770108, 1801189604231, 8517995996495, 40360819400887, 191589552910532
Offset: 0
Keywords
Links
- S. J. Cyvin, B. N. Cyvin, J. Brunvoll and E. Brendsdal, Enumeration and Classification of Certain Polygonal Systems Representing Polycyclic Conjugated Hydrocarbons: Annelated Catafusenes, Journal of Chemical Information and Modeling [formerly, J. Chem. Inform. Comput. Sci.], 34 (1994), pp. 1174-1180.
- Eric Weisstein's World of Mathematics, Fusene.
Formula
G.f.: (8*(1+x^2-6*x^3-x^4) - (1-3*x)*(1-x)^(5/2)*(1-5*x)^(1/2) - (1-x)^(-1)*(5+3*x-5*x^2-7*x^3)*(1-x^2)^(1/2)*(1-5*x^2)^(1/2) - 2*(1-x^4)^(1/2)*(1-5*x^4)^(1/2))/16/x^4. - Emeric Deutsch, Mar 13 2004. [This g.f. is (essentially) Eq. (48) on p. 1179 in the Cyvin et al. (1994) paper. - N. J. A. Sloane, Apr 14 2013]
Extensions
More terms from Emeric Deutsch, Mar 13 2004
Name edited by Petros Hadjicostas, May 25 2019
Comments