cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045913 Kaprekar numbers: numbers k such that k = q + r and k^2 = q*10^m + r, for some m >= 1, q >= 0 and 0 <= r < 10^m. Here q and r must both have the same number of digits.

Original entry on oeis.org

1, 9, 45, 55, 703, 4950, 5050, 7272, 7777, 77778, 82656, 318682, 329967, 351352, 356643, 390313, 461539, 466830, 499500, 500500, 533170, 538461, 609687, 643357, 648648, 670033, 681318, 791505, 812890, 818181, 851851, 857143, 4444444, 4927941, 5072059, 5555556, 11111112, 36363636, 38883889, 44363341, 44525548, 49995000, 50005000
Offset: 1

Views

Author

Keywords

Comments

A variant of Kaprekar's original definition (A006886).

Examples

			703 is Kaprekar because 703 = 494 + 209, 703^2 = 494209.
11111112^2 = 123456809876544 = (1234568 + 9876544)^2. The two "halves" of the square have the same length here, although it's not m but rather m - 1.
		

References

  • D. R. Kaprekar, On Kaprekar numbers, J. Rec. Math., 13 (1980-1981), 81-82.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 151.

Crossrefs

Extensions

More terms from Michel ten Voorde, Apr 13 2001
Definition clarified by Reinhard Zumkeller, Oct 05 2014
Definition modified and terms corrected by Max Alekseyev, Aug 06 2017