cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045940 Numbers m such that the factorizations of m..m+3 have the same number of primes (including multiplicities).

Original entry on oeis.org

602, 603, 1083, 2012, 2091, 2522, 2523, 2524, 2634, 2763, 3243, 3355, 4023, 4202, 4203, 4921, 4922, 4923, 5034, 5035, 5132, 5203, 5282, 5283, 5785, 5882, 5954, 5972, 6092, 6212, 6476, 6962, 6985, 7314, 7730, 7731, 7945, 8393, 8825, 8956, 8972, 9162
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), this sequence (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).
Cf. A045932 (similar, with omega).

Programs

  • Mathematica
    f[n_]:=Plus@@Last/@FactorInteger[n];lst={};lst={};Do[If[f[n]==f[n+1]==f[n+2]==f[n+3],AppendTo[lst,n]],{n,0,8!}];lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
    SequencePosition[PrimeOmega[Range[10000]],{x_,x_,x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 02 2020 *)
  • PARI
    isok(n) = (bigomega(n) == bigomega(n+1)) && (bigomega(n+1) == bigomega(n+2)) && (bigomega(n+2) == bigomega(n+3)); \\ Michel Marcus, Jan 06 2015