cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046006 Discriminants of imaginary quadratic fields with class number 9 (negated).

Original entry on oeis.org

199, 367, 419, 491, 563, 823, 1087, 1187, 1291, 1423, 1579, 2003, 2803, 3163, 3259, 3307, 3547, 3643, 4027, 4243, 4363, 4483, 4723, 4987, 5443, 6043, 6427, 6763, 6883, 7723, 8563, 8803, 9067, 10627
Offset: 1

Views

Author

Keywords

Comments

The class group of Q[sqrt(-4027)] is isomorphic to C_3 X C_3. For all other d in this sequence, the class group of Q[sqrt(-d)] is isomorphic to C_9. - Jianing Song, Dec 01 2019

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[10700], NumberFieldClassNumber[Sqrt[-#]] == 9 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 9};
    for(n=1, 11000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [n for n in (1..4000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==9] # G. C. Greubel, Mar 01 2019