A046007 Discriminants of imaginary quadratic fields with class number 10 (negated).
119, 143, 159, 296, 303, 319, 344, 415, 488, 611, 635, 664, 699, 724, 779, 788, 803, 851, 872, 916, 923, 1115, 1268, 1384, 1492, 1576, 1643, 1684, 1688, 1707, 1779, 1819, 1835, 1891, 1923, 2152, 2164, 2363, 2452, 2643, 2776, 2836, 2899, 3028
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..87
- Steven Arno, M. L. Robinson and Ferrel S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arithm. 83.4 (1998), 295-330
- Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796.
- C. Wagner, Class Number 5, 6 and 7, Math. Comput. 65, 785-800, 1996.
- Eric Weisstein's World of Mathematics, Class Number.
- Index entries for sequences related to quadratic fields
Programs
-
Mathematica
Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[14000], NumberFieldClassNumber[Sqrt[-#]] == 10 &]] (* Jean-François Alcover, Jun 27 2012 *)
-
PARI
ok(n)={isfundamental(-n) && qfbclassno(-n) == 10} \\ Andrew Howroyd, Jul 24 2018
-
Sage
[n for n in (1..3500) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==10] # G. C. Greubel, Mar 01 2019
Comments