A046013 Discriminants of imaginary quadratic fields with class number 16 (negated).
399, 407, 471, 559, 584, 644, 663, 740, 799, 884, 895, 903, 943, 1015, 1016, 1023, 1028, 1047, 1139, 1140, 1159, 1220, 1379, 1412, 1416, 1508, 1560, 1595, 1608, 1624, 1636, 1640, 1716, 1860, 1876, 1924, 1983, 2004, 2019, 2040, 2056, 2072
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..322
- Steven Arno, M. L. Robinson and Ferrel S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arithm. 83.4 (1998), 295-330
- Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796.
- C. Wagner, Class Number 5, 6 and 7, Math. Comput. 65, 785-800, 1996.
- Victor Y. Wang, On Hilbert 2-class fields and 2-towers of imaginary quadratic number fields, arXiv preprint arXiv:1508.06552, 2015
- Eric Weisstein's World of Mathematics, Class Number.
- Index entries for sequences related to quadratic fields
Programs
-
Mathematica
Reap[ For[n = 1, n < 3000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 16, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
-
PARI
ok(n)={isfundamental(-n) && qfbclassno(-n) == 16} \\ Andrew Howroyd, Jul 24 2018
Comments