A046028 Largest multiple prime factor of the n-th nonsquarefree number (A013929).
2, 2, 3, 2, 2, 3, 2, 2, 5, 3, 2, 2, 3, 2, 2, 3, 2, 7, 5, 2, 3, 2, 2, 3, 2, 2, 3, 5, 2, 2, 3, 2, 2, 3, 2, 2, 7, 3, 5, 2, 3, 2, 2, 3, 2, 11, 2, 5, 3, 2, 2, 3, 2, 2, 3, 7, 2, 5, 2, 3, 2, 2, 3, 2, 2, 13, 3, 2, 5, 2, 3, 2, 2, 3, 2, 7, 3, 5, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 3, 2, 2, 11, 3, 2, 7, 2, 5, 3, 2, 2, 3
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Greatest Prime Factor.
- Eric Weisstein's World of Mathematics, Squareful.
Programs
-
Haskell
a046028 n = a046028_list !! (n-1) a046028_list = f 1 where f x | null zs = f (x + 1) | otherwise = (fst $ head zs) : f (x + 1) where zs = reverse $ filter ((> 1) . snd) $ zip (a027748_row x) (a124010_row x) -- Reinhard Zumkeller, Dec 29 2012
-
Mathematica
Select[ FactorInteger[#]//Reverse, #[[2]]>1&, 1][[1, 1]]& /@ Select[ Range[300], !SquareFreeQ[#]& ] (* Jean-François Alcover, Nov 06 2012 *)
-
Python
from math import isqrt from sympy import mobius, factorint def A046028(n): def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n, f(n) while m != k: m, k = k, f(k) s = factorint(m) return next(p for p in sorted(s,reverse=True) if s[p]>1) # Chai Wah Wu, Jul 22 2024