cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046027 Smallest multiple prime factor of the n-th nonsquarefree number (A013929).

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 2, 2, 5, 3, 2, 2, 2, 2, 2, 3, 2, 7, 5, 2, 3, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 2, 7, 3, 2, 2, 2, 2, 2, 3, 2, 11, 2, 5, 3, 2, 2, 3, 2, 2, 2, 7, 2, 5, 2, 3, 2, 2, 3, 2, 2, 13, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 11, 3, 2, 7, 2, 5, 2, 2, 2, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ FactorInteger[#], #[[2]]>1&, 1][[1, 1]]& /@ Select[ Range[300], !SquareFreeQ[#]& ] (* Jean-François Alcover, Nov 06 2012 *)
  • PARI
    lista(nn) = apply(x->factor(x)[1,1], apply(x->x/core(x), select(x->!issquarefree(x), [1..nn]))); \\ Michel Marcus, Jun 24 2025
  • Python
    from math import isqrt
    from sympy import mobius, factorint
    def A046027(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        s = factorint(m)
        return next(p for p in sorted(s) if s[p]>1) # Chai Wah Wu, Jul 22 2024
    

Formula

a(n) = A249739(A013929(n)). - Amiram Eldar, Feb 11 2021

A212177 Number of exponents >= 2 in the canonical prime factorization of the n-th nonsquarefree number (A013929(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Length of second signature of A013929(n) (cf. A212172).

Examples

			24 = 2^3*3 has 1 exponent of size 2 or greater in its prime factorization. Since 24 = A013929(8), a(8) = 1.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Programs

Formula

a(n) = A056170(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (Sum_{p prime} 1/p^2)/(1-1/zeta(2)) = A085548 / A229099 = 1.15347789194214704903... . - Amiram Eldar, Oct 01 2023

A083730 Greatest prime^2 factor of n, or a(n)=1 for squarefree n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 25, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 49, 9
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 14 2003

Keywords

Comments

Not multiplicative, for example a(4)*a(9) <> a(36). - R. J. Mathar, Oct 31 2011

Crossrefs

Programs

Formula

a(n) = A249740(n)^2. - Amiram Eldar, Feb 11 2021
Showing 1-3 of 3 results.