cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A056170 Number of non-unitary prime divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Labos Elemer, Jul 27 2000

Keywords

Comments

A prime factor of n is unitary iff its exponent is 1 in the prime factorization of n. (Of course for any prime p, GCD(p, n/p) is either 1 or p. For a unitary prime factor it must be 1.)
Number of squared primes dividing n. - Reinhard Zumkeller, May 18 2002
a(A005117(n)) = 0; a(A013929(n)) > 0; a(A190641(n)) = 1. - Reinhard Zumkeller, Dec 29 2012
First differences of A013940. - Jason Kimberley, Feb 01 2017
Number of exponents larger than 1 in the prime factorization of n. - Antti Karttunen, Nov 28 2017

Crossrefs

Programs

Formula

Additive with a(p^e) = 0 if e = 1, 1 otherwise.
G.f.: Sum_{k>=1} x^(prime(k)^2)/(1 - x^(prime(k)^2)). - Ilya Gutkovskiy, Jan 01 2017
a(n) = log_2(A000005(A071773(n))). - observed by Velin Yanev, Aug 20 2017, confirmed by Antti Karttunen, Nov 28 2017
From Antti Karttunen, Nov 28 2017: (Start)
a(n) = A001221(n) - A056169(n).
a(n) = omega(A000188(n)) = omega(A003557(n)) = omega(A057521(n)) = omega(A295666(n)), where omega = A001221.
For all n >= 1 it holds that:
a(A003557(n)) = A295659(n).
a(n) >= A162641(n).
(End)
Dirichlet g.f.: primezeta(2s)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Sum_{p prime} 1/p^2 = 0.452247... (A085548). - Amiram Eldar, Nov 01 2020
a(n) = A275812(n) - A046660(n). - Amiram Eldar, Jan 09 2024

Extensions

Minor edits by Franklin T. Adams-Watters, Mar 23 2011

A046028 Largest multiple prime factor of the n-th nonsquarefree number (A013929).

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 2, 2, 5, 3, 2, 2, 3, 2, 2, 3, 2, 7, 5, 2, 3, 2, 2, 3, 2, 2, 3, 5, 2, 2, 3, 2, 2, 3, 2, 2, 7, 3, 5, 2, 3, 2, 2, 3, 2, 11, 2, 5, 3, 2, 2, 3, 2, 2, 3, 7, 2, 5, 2, 3, 2, 2, 3, 2, 2, 13, 3, 2, 5, 2, 3, 2, 2, 3, 2, 7, 3, 5, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 3, 2, 2, 11, 3, 2, 7, 2, 5, 3, 2, 2, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a046028 n = a046028_list !! (n-1)
    a046028_list = f 1 where
       f x | null zs   = f (x + 1)
           | otherwise = (fst $ head zs) : f (x + 1)
           where zs = reverse $ filter ((> 1) . snd) $
                      zip (a027748_row x) (a124010_row x)
    -- Reinhard Zumkeller, Dec 29 2012
    
  • Mathematica
    Select[ FactorInteger[#]//Reverse, #[[2]]>1&, 1][[1, 1]]& /@ Select[ Range[300], !SquareFreeQ[#]& ] (* Jean-François Alcover, Nov 06 2012 *)
  • Python
    from math import isqrt
    from sympy import mobius, factorint
    def A046028(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        s = factorint(m)
        return next(p for p in sorted(s,reverse=True) if s[p]>1) # Chai Wah Wu, Jul 22 2024

Formula

a(n) = A249740(A013929(n)). - Amiram Eldar, Feb 11 2021

A212174 Row n of table represents second signature of A013929(n): list of exponents >= 2 in canonical prime factorization of A013929(n), in nonincreasing order.

Original entry on oeis.org

2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 2, 2, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 3, 2, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 2, 2, 3, 3, 2, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 4, 2, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 6, 2, 2, 2, 3, 2, 2, 2
Offset: 1

Views

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Length of row n equals A212177(n).

Examples

			First rows of table read: 2; 3; 2; 2; 4; 2; 2; 3;...
12 = 2^2*3 has positive exponents 2 and 1 in its prime factorization, but only exponents that are 2 or greater appear in a number's second signature. Hence, 12's second signature is {2}. Since 12 = A013929(4), row 4 of the table represents the second signature {2}.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Programs

  • Magma
    &cat[Reverse(Sort([pe[2]:pe in Factorisation(n)|pe[2]gt 1])):n in[1..247]]; // Jason Kimberley, Jun 13 2012

Formula

a(n) = A212172(A013929(n)).
This sequence is both the subsequence of A212171 formed by omitting all 1s and the subsequence of A212172 formed by omitting all 0's. - Jason Kimberley, Jun 13 2012
Showing 1-3 of 3 results.