cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046042 Number of partitions of n into fourth powers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9
Offset: 1

Views

Author

Keywords

Comments

In general, the number of partitions of n into perfect s-th powers (s>=1) is asymptotic to (2*Pi)^(-(s+1)/2) * sqrt(s/(s+1)) * k * n^(1/(s+1)-3/2) * exp((s+1)*k*n^(1/(s+1))), where k = (Gamma(1 + 1/s) * Zeta(1 + 1/s) / s)^(s/(s+1)) [Hardy & Ramanujan, 1917]. - Vaclav Kotesovec, Dec 29 2016

Examples

			a(33) = 3 because we have [16,16,1], [16,1,1,...,1] (17 1's) and [1,1,...,1] (33 1's).
		

References

  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.

Crossrefs

Programs

  • Haskell
    a046042 = p $ tail a000583_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, May 18 2015   ~
  • Maple
    g:=-1+1/product(1-x^(j^4),j=1..10): gser:=series(g,x=0,105): seq(coeff(gser,x,n),n=1..102); # Emeric Deutsch, Apr 06 2006
  • Mathematica
    g = -1 + 1/Product[1 - x^(j^4), {j, 1, 10}]; gser =
    Series[g, {x, 0, 105}]; Table[Coefficient[gser, x, n], {n, 1, 102}] (* Jean-François Alcover, Oct 29 2012, after Emeric Deutsch *)

Formula

G.f.: -1+1/product(1-x^(j^4),j=1..infinity). - Emeric Deutsch, Apr 06 2006
a(n) ~ exp(5 * (Gamma(1/4)*Zeta(5/4))^(4/5) * n^(1/5) / 2^(16/5)) * (Gamma(1/4)*Zeta(5/4))^(4/5) / (2^(47/10) * sqrt(5) * Pi^(5/2) * n^(13/10)) [Hardy & Ramanujan, 1917]. - Vaclav Kotesovec, Dec 29 2016
G.f.: Sum_{i>=1} x^(i^4) / Product_{j=1..i} (1 - x^(j^4)). - Ilya Gutkovskiy, May 07 2017