A046072 Decompose multiplicative group of integers modulo n as a product of cyclic groups C_{k_1} x C_{k_2} x ... x C_{k_m}, where k_i divides k_j for i < j; then a(n) = m.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 3, 1, 1, 1, 3, 2, 1, 2, 3, 1, 2, 2, 2, 2, 1, 2, 3, 1, 1, 2, 2, 1, 2
Offset: 1
References
- David A. Cox, Galois Theory, John Wiley & Sons, Hoboken, New Jrsey, 2004, 235.
- Daniel Shanks, Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 92-93, 1993.
Links
- Joerg Arndt, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Modulo Multiplication Group.
- Wikipedia, Multiplicative group of integers modulo n. See the table at the end.
Crossrefs
Programs
-
Mathematica
f[n_] := Which[OddQ[n], PrimeNu[n], EvenQ[n] && ! IntegerQ[n/4], PrimeNu[n] - 1, IntegerQ[n/4] && ! IntegerQ[n/8], PrimeNu[n], IntegerQ[n/8], PrimeNu[n] + 1]; Join[{1, 1}, Table[f[n], {n, 3, 102}]] (* Geoffrey Critzer, Dec 24 2014 *)
-
PARI
a(n)=if(n<=2, 1, #znstar(n)[3]); \\ Joerg Arndt, Aug 26 2014
Formula
a(n) = A001221(n) - 1 if n > 2 is divisible by 2 and not by 4, a(n) = A001221(n) + 1 if n is divisible by 8, a(n) = A001221(n) in other cases. - Ivan Neretin, Aug 01 2016
Sum_{k=1..n} a(k) = n * (log(log(n)) + B - 1/8) + O(n/log(n)), where B is Mertens's constant (A077761). - Amiram Eldar, Sep 21 2024
Comments