A046073 Number of squares in multiplicative group modulo n.
1, 1, 1, 1, 2, 1, 3, 1, 3, 2, 5, 1, 6, 3, 2, 2, 8, 3, 9, 2, 3, 5, 11, 1, 10, 6, 9, 3, 14, 2, 15, 4, 5, 8, 6, 3, 18, 9, 6, 2, 20, 3, 21, 5, 6, 11, 23, 2, 21, 10, 8, 6, 26, 9, 10, 3, 9, 14, 29, 2, 30, 15, 9, 8, 12, 5, 33, 8, 11, 6, 35, 3, 36, 18, 10, 9, 15, 6, 39, 4, 27, 20, 41, 3, 16, 21
Offset: 1
References
- Daniel Shanks, Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, p. 95, 1993.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Steven R. Finch and Pascal Sebah, Square and Cubes Modulo n, arXiv:math/0604465 [math.NT], 2006-2016.
- Eric Weisstein's World of Mathematics, Modulo Multiplication Group.
- Eric Weisstein's World of Mathematics, Quadratic Residue.
Crossrefs
Programs
-
Maple
F:= n -> nops({seq}(`if`(igcd(t,n)=1,t^2 mod n,NULL), t=1..floor(n/2))): 1, seq(F(n), n=2..100); # Robert Israel, Jan 04 2015 # 2nd program A046073 := proc(n) local a,p,e,pf; a := 1; for pf in ifactors(n)[2] do p := op(1,pf) ; e := op(2,pf) ; if p = 2 then a := a*p^max(e-3,0) ; else a := a*(p-1)/2*p^(e-1) ; end if; end do: a ; end proc: # R. J. Mathar, Oct 03 2016
-
Mathematica
Table[EulerPhi[n]/Sum[Boole[Mod[k^2, n] == 1] + Boole[n == 1], {k, n}], {n, 86}] (* or *) Table[Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 0 :> Which[p == 1, 1, p == 2, 2^Max[e - 3, 0], True, (p - 1) p^(e - 1)/2]], {n, 86}] (* Michael De Vlieger, Jul 18 2017 *)
-
PARI
A060594(n) = if(n<=2, 1, 2^#znstar(n)[3]); \\ This function from Joerg Arndt, Jan 06 2015 A046073(n) = eulerphi(n)/A060594(n); \\ Antti Karttunen, Jul 17 2017, after Sharon Sela's Mar 09 2002 formula.
-
PARI
A046073(n)=if(n>4,(n=znstar(n))[1]>>#n[3],1) \\ Avoids duplicate computation of phi(n). - M. F. Hasler, Nov 27 2017, typo fixed Mar 11 2021
-
Python
from sympy import factorint, prod def a(n): return 1 if n==1 else prod([2**max(e - 3, 0) if p==2 else (p - 1)*p**(e - 1)//2 for p, e in factorint(n).items()]) print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 17 2017
-
Scheme
(define (A046073 n) (cond ((= 1 n) n) ((even? n) (* (A000079 (max (- (A007814 n) 3) 0)) (A046073 (A028234 n)))) (else (* (/ 1 2) (- (A020639 n) 1) (/ (A028233 n) (A020639 n)) (A046073 (A028234 n)))))) ;; Antti Karttunen, Jul 17 2017, after the given multiplicative formula.
Formula
a(n) * A060594(n) = A000010(n) = phi(n) (This gives a formula for a(n) using the one in A060594(n) ). - Sharon Sela (sharonsela(AT)hotmail.com), Mar 09 2002
Multiplicative with a(2^e) = 2^max(e-3,0), a(p^e) = (p-1)*p^(e-1)/2 for p an odd prime.
Sum_{k=1..n} a(k) ~ c * n^2/sqrt(log(n)), where c = (43/(80*sqrt(Pi))) * Product_{p prime} (1+1/(2*p))*sqrt(1-1/p) = 0.24627260085060864229... (Finch and Sebah, 2006). - Amiram Eldar, Oct 18 2022
Extensions
Edited and verified by Franklin T. Adams-Watters, Nov 07 2006
Comments