cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046163 Reduced denominators of (n-1)^2/(n^2 + n + 1).

Original entry on oeis.org

1, 7, 13, 7, 31, 43, 19, 73, 91, 37, 133, 157, 61, 211, 241, 91, 307, 343, 127, 421, 463, 169, 553, 601, 217, 703, 757, 271, 871, 931, 331, 1057, 1123, 397, 1261, 1333, 469, 1483, 1561, 547, 1723, 1807, 631, 1981, 2071, 721, 2257, 2353, 817, 2551, 2653
Offset: 1

Views

Author

Keywords

Comments

Arises in Routh's theorem.

Crossrefs

Cf. A046162 (numerators).

Programs

  • Magma
    [Denominator((n-1)^2/(n^2+n+1)): n in [1..70]]; // G. C. Greubel, Oct 27 2022
    
  • Mathematica
    a[n_] := Denominator[(n - 1)^2/(n^2 + n + 1)]; Array[a, 50] (* Amiram Eldar, Aug 11 2022 *)
  • SageMath
    [denominator((n-1)^2/(n^2+n+1)) for n in range(1,71)] # G. C. Greubel, Oct 27 2022

Formula

G.f.: x*(1 + 7*x + 13*x^2 + 4*x^3 + 10*x^4 + 4*x^5 + x^6 + x^7 + x^8)/(1 - x^3)^3.
From Amiram Eldar, Aug 11 2022: (Start)
a(n) = numerator((n^2 + n + 1)/3).
Sum_{n>=1} 1/a(n) = (2*tanh(Pi/(2*sqrt(3))) + 3*tanh(sqrt(3)*Pi/2))*Pi/(3*sqrt(3)) - 1. (End)