cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A153171 First differences of A046163.

Original entry on oeis.org

6, 6, -6, 24, 12, -24, 54, 18, -54, 96, 24, -96, 150, 30, -150, 216, 36, -216, 294, 42, -294, 384, 48, -384, 486, 54, -486, 600, 60, -600, 726, 66, -726, 864, 72, -864, 1014, 78, -1014, 1176, 84, -1176, 1350, 90, -1350, 1536, 96, -1536, 1734, 102, -1734
Offset: 0

Views

Author

Paul Curtz, Dec 20 2008

Keywords

Crossrefs

Cf. A046163.

Programs

  • Mathematica
    Differences[Table[Denominator[(n-1)^2/(n^2+n+1)],{n,1,50}]] (* Vaclav Kotesovec, Nov 04 2014 *)
  • PARI
    Vec(6*(x^4+2*x^3+x^2+2*x+1)/((x-1)^2*(x^2+x+1)^3) + O(x^100)) \\ Colin Barker, Nov 04 2014

Formula

G.f.: 6*(x^4+2*x^3+x^2+2*x+1) / ((x-1)^2*(x^2+x+1)^3). - Colin Barker, Nov 04 2014

Extensions

Edited by N. J. A. Sloane, Dec 20 2008
More terms from Colin Barker, Nov 04 2014

A158622 Numerator of the reduced fraction A158620(n)/A158621(n).

Original entry on oeis.org

7, 13, 7, 31, 43, 19, 73, 91, 37, 133, 157, 61, 211, 241, 91, 307, 343, 127, 421, 463, 169, 553, 601, 217, 703, 757, 271, 871, 931, 331, 1057, 1123, 397, 1261, 1333, 469, 1483, 1561, 547, 1723, 1807, 631, 1981, 2071, 721, 2257, 2353, 817, 2551, 2653, 919, 2863
Offset: 2

Views

Author

Jonathan Vos Post, Mar 23 2009

Keywords

Comments

A158620(n) = Product_{k=2..n} (k^3-1). A158621(n) = Product_{k=2..n} (k^3+1). A158622(n) is the numerator of the reduced fraction A158620(n)/A158621(n). A158623(n) is the denominator of the reduced fraction A158620(n)/A158621(n). The reduced fractions are 7/9, 13/18, 7/10, 31/45, 43/63, 19/28, 73/108, 91/135, 37/55, 133/198, ...
Is this the same as A046163? - R. J. Mathar, Mar 27 2009
Apparently a(n) = A130770(n) for 2 <= n <= 53. - Georg Fischer, Oct 24 2018

Examples

			a(2) = 7 = numerator of (2^3-1)/2^3+1 = 7/9.
a(3) = 13 = numerator of ((2^3-1)*(3^3-1))/((2^3+1)*(3^3+1)) = (7 * 26)/ (9 * 28) = 182/252 = 13/18.
a(4) = 7 = = numerator of ((2^3-1)*(3^3-1)*(4^3-1))/((2^3+1)*(3^3+1)*(4^3+1)) = (7 * 26 * 63)/(9 * 28 * 65) = 11466/16380 = 7/10.
a(5) = 31 = numerator of ((2^3-1)(3^3-1)(4^3-1)(5^3-1))/((2^3+1)(3^3+1)(4^3+1)(5^3+1)) = 1421784/2063880 = 31/45.
		

Crossrefs

Programs

  • Maple
    A158622 := proc(n) 2*(n^2+n+1)/3/n/(n+1) ; numer(%) ; end: seq(A158622(n),n=2..100) ; # R. J. Mathar, Mar 27 2009
  • Mathematica
    Table[Product[k^3-1,{k,2,n}]/Product[k^3+1,{k,2,n}],{n,2,60}]//Numerator (* Harvey P. Dale, Feb 26 2020 *)

Formula

Numerator of (Product_{k=2..n} (k^3-1))/Product_{k=2..n} (k^3+1) = numerator of Product_{k=2..n} A068601(k)/A001093(k).
A158620(n)/A158621(n) = 2(n^2+n+1)/(3n(n+1)). - R. J. Mathar, Mar 27 2009
Empirical g.f.: -x^2*(x^8 + x^7 + x^6 - 2*x^5 + 4*x^4 + 10*x^3 + 7*x^2 + 13*x + 7) / ((x-1)^3*(x^2 + x + 1)^3). - Colin Barker, May 09 2013

Extensions

More terms from R. J. Mathar, Mar 27 2009

A046162 Reduced numerators of (n-1)^2/(n^2 + n + 1).

Original entry on oeis.org

0, 1, 4, 3, 16, 25, 12, 49, 64, 27, 100, 121, 48, 169, 196, 75, 256, 289, 108, 361, 400, 147, 484, 529, 192, 625, 676, 243, 784, 841, 300, 961, 1024, 363, 1156, 1225, 432, 1369, 1444, 507, 1600, 1681, 588, 1849, 1936, 675, 2116, 2209, 768, 2401, 2500
Offset: 1

Views

Author

Keywords

Comments

Arises in Routh's theorem.
With offset 0, multiplicative with a(3^e) = 3^(2e-1), a(p^e) = p^(2e) otherwise. - David W. Wilson, Jun 12 2005, corrected by Robert Israel, Apr 28 2017

Crossrefs

Cf. A046163 (denominators), A147560.

Programs

  • Magma
    [Numerator((n-1)^2/3): n in [1..70]]; // G. C. Greubel, Oct 27 2022
    
  • Maple
    seq(numer((n-1)^2/(n^2+n+1)), n=1..51) ; # Zerinvary Lajos, Jun 04 2008
    seq(denom(3/n^2-2), n=0..76) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    a[n_] := Numerator[(n - 1)^2/(n^2 + n + 1)]; Array[a, 50] (* Amiram Eldar, Aug 11 2022 *)
  • SageMath
    [numerator((n-1)^2/3) for n in range(1,71)] # G. C. Greubel, Oct 27 2022

Formula

G.f.: x^2*(1 + 4*x + 3*x^2 + 13*x^3 + 13*x^4 + 3*x^5 + 4*x^6 + x^7)/(1 - x^3)^3.
a(n) = (n-1)^2/3 if n-1 == 0 (mod 3), (n-1)^2 otherwise. - David W. Wilson, Jun 12 2005, corrected by Robert Israel, Apr 28 2017
From Amiram Eldar, Aug 11 2022: (Start)
a(n) = numerator((n-1)^2/3).
Sum_{n>=2} 1/a(n) = 11*Pi^2/54. (End)
From Amiram Eldar, Dec 30 2022: (Start)
With offset 0, Dirichlet g.f.: zeta(s-2)*(1-6/3^s).
Sum_{k=1..n} a(k) ~ 7*n^3/27. (End)

A130770 One third of the least common multiple of 3 and n^2+n+1.

Original entry on oeis.org

1, 1, 7, 13, 7, 31, 43, 19, 73, 91, 37, 133, 157, 61, 211, 241, 91, 307, 343, 127, 421, 463, 169, 553, 601, 217, 703, 757, 271, 871, 931, 331, 1057, 1123, 397, 1261, 1333, 469, 1483, 1561, 547, 1723, 1807, 631, 1981, 2071, 721, 2257, 2353, 817, 2551, 2653, 919
Offset: 0

Views

Author

W. Neville Holmes, Jul 14 2007

Keywords

Comments

This is a subset of A051176 and is also one third of A130723.

Examples

			a(4)=7 because 4^2+4+1 =21, the LCM of 3 and 21 is 21 and 21/3=7.
		

Crossrefs

Programs

  • Magma
    [Lcm(3,n^2+n+1)/3: n in [0..50]]; // G. C. Greubel, Oct 26 2017
  • Maple
    seq(denom((n-1)^2/(n^2+n+1)), n=0..52) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Table[LCM[3,n^2+n+1]/3,{n,0,60}] (* or *) LinearRecurrence[ {0,0,3,0,0,-3,0,0,1},{1,1,7,13,7,31,43,19,73},60] (* Harvey P. Dale, Apr 10 2014 *)
  • PARI
    for(n=0,50, print1(lcm(3, n^2 + n +1)/3, ", ")) \\ G. C. Greubel, Oct 26 2017
    

Formula

Conjecture: a(n) = A046163(n), n>0. - R. J. Mathar, Jun 13 2008
a(n) = 3*a(n-3)-3*a(n-6)+a(n-9), with a(0)=1, a(1)=1, a(2)=7, a(3)=13, a(4)=7, a(5)=31, a(6)=43, a(7)=19, a(8)=73. - Harvey P. Dale, Apr 10 2014

A153186 Period 9: repeat 1,7,4,7,4,7,1,1,1.

Original entry on oeis.org

1, 7, 4, 7, 4, 7, 1, 1, 1, 1, 7, 4, 7, 4, 7, 1, 1, 1, 1, 7, 4, 7, 4, 7, 1, 1, 1, 1, 7, 4, 7, 4, 7, 1, 1, 1, 1, 7, 4, 7, 4, 7, 1, 1, 1, 1, 7, 4, 7, 4, 7, 1, 1, 1, 1, 7, 4, 7, 4, 7, 1, 1, 1, 1, 7, 4, 7, 4, 7, 1, 1, 1
Offset: 0

Views

Author

Paul Curtz, Dec 20 2008

Keywords

Crossrefs

Cf. A046163.

Programs

Extensions

Edited by N. J. A. Sloane, Dec 25 2008
Showing 1-5 of 5 results.