cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A147560 a(n) = 4*A046162(n+1).

Original entry on oeis.org

0, 4, 16, 12, 64, 100, 48, 196, 256, 108, 400, 484, 192, 676, 784, 300, 1024, 1156, 432, 1444, 1600, 588, 1936, 2116, 768, 2500, 2704, 972, 3136, 3364, 1200, 3844, 4096, 1452, 4624, 4900, 1728, 5476, 5776, 2028, 6400, 6724, 2352, 7396, 7744, 2700, 8464
Offset: 0

Views

Author

Paul Curtz, Nov 07 2008

Keywords

Crossrefs

Companion to A144437.
Cf. A046162.
Cf. A171522. [R. J. Mathar, Dec 15 2009]

Programs

  • Magma
    [4*Numerator(n^2/(n^2+3*n+3)): n in [0..70]]; // G. C. Greubel, Oct 27 2022
    
  • Maple
    A046162 := proc(n) (n-1)^2/(n^2+n+1) ; numer(%) ; end proc: A147560 := proc(n) 4*A046162(n+1) ; end proc: seq(A147560(n),n=0..70) ; # R. J. Mathar, Dec 15 2009
  • Mathematica
    a[n_] := 4 * Numerator[n^2/(n^2 + 3*n + 3)]; Array[a, 50, 0] (* Amiram Eldar, Aug 14 2022 *)
  • SageMath
    [4*numerator(n^2/(n^2 +3*n +3)) for n in range(71)] # G. C. Greubel, Oct 27 2022

Formula

a(n) = 4*numerator(n^2/(n^2 + 3*n + 3)).
Sum_{n>=1} 1/a(n) = 11*Pi^2/216. - Amiram Eldar, Aug 14 2022
G.f.: 4*x*(1 + 4*x + 3*x^2 + 13*x^3 + 13*x^4 + 3*x^5 + 4*x^6 + x^7)/(1-x^3)^3. - G. C. Greubel, Oct 27 2022

Extensions

More terms from R. J. Mathar, Dec 15 2009

A046163 Reduced denominators of (n-1)^2/(n^2 + n + 1).

Original entry on oeis.org

1, 7, 13, 7, 31, 43, 19, 73, 91, 37, 133, 157, 61, 211, 241, 91, 307, 343, 127, 421, 463, 169, 553, 601, 217, 703, 757, 271, 871, 931, 331, 1057, 1123, 397, 1261, 1333, 469, 1483, 1561, 547, 1723, 1807, 631, 1981, 2071, 721, 2257, 2353, 817, 2551, 2653
Offset: 1

Views

Author

Keywords

Comments

Arises in Routh's theorem.

Crossrefs

Cf. A046162 (numerators).

Programs

  • Magma
    [Denominator((n-1)^2/(n^2+n+1)): n in [1..70]]; // G. C. Greubel, Oct 27 2022
    
  • Mathematica
    a[n_] := Denominator[(n - 1)^2/(n^2 + n + 1)]; Array[a, 50] (* Amiram Eldar, Aug 11 2022 *)
  • SageMath
    [denominator((n-1)^2/(n^2+n+1)) for n in range(1,71)] # G. C. Greubel, Oct 27 2022

Formula

G.f.: x*(1 + 7*x + 13*x^2 + 4*x^3 + 10*x^4 + 4*x^5 + x^6 + x^7 + x^8)/(1 - x^3)^3.
From Amiram Eldar, Aug 11 2022: (Start)
a(n) = numerator((n^2 + n + 1)/3).
Sum_{n>=1} 1/a(n) = (2*tanh(Pi/(2*sqrt(3))) + 3*tanh(sqrt(3)*Pi/2))*Pi/(3*sqrt(3)) - 1. (End)
Showing 1-2 of 2 results.