cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046180 Hexagonal pentagonal numbers.

Original entry on oeis.org

1, 40755, 1533776805, 57722156241751, 2172315626468283465, 81752926228785223683195, 3076689623521787481625080301, 115788137209866023854693048367775, 4357570752679408318225730700647767185, 163992817590548715438241125333485021875651
Offset: 1

Views

Author

Keywords

Comments

As n increases, this sequence is approximately geometric with common ratio r = lim_{n->infinity} a(n)/a(n-1) = (2+sqrt(3))^8 = 18817 + 10864*sqrt(3). - Ant King, Dec 13 2011
Dickson calls the terms "triangular, pentagonal and hexagonal" (all hexagonal numbers are also triangular). - Jonathan Sondow, May 06 2014

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{37635, -37635, 1}, {1, 40755, 1533776805}, 8] (* Ant King, Dec 13 2011 *)
  • PARI
    Vec(x*(1+3120*x+15*x^2)/((1-x)*(1-37634*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 21 2015

Formula

a(n) = 37634*a(n-1) - a(n-2) + 3136; g.f.: x*(1+3120*x+15*x^2)/((1-x)*(1-37634*x+x^2)). - Warut Roonguthai Jan 08 2001
a(n+1) = 18817*a(n)+1568+1358*(192*a(n)^2+32*a(n)+1)^0.5 - Richard Choulet, Sep 19 2007
From Ant King, Dec 13 2011: (Start)
a(n) = 37635*a(n-1) - 37635*a(n-2) + a(n-3).
a(n) = (1/48)*((2+sqrt(3))^(8n-5)+(2-sqrt(3))^(8n-5)-4).
a(n) = floor((1/48)*(2+sqrt(3))^(8n-5)).
a(n) = (1/48)*((tan(5*Pi/12))^(8n-5)+(tan(Pi/12))^(8n-5)-4).
a(n) = floor((1/48)*(tan(5*pi/12))^(8n-5)).
(End)