cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046196 Indices of square numbers which are also heptagonal.

Original entry on oeis.org

1, 9, 77, 1519, 12987, 111035, 2190397, 18727245, 160112393, 3158550955, 27004674303, 230881959671, 4554628286713, 38940721617681, 332931625733189, 6567770830889191, 56152493568021699, 480087173425298867, 9470720983513926709, 80971856784365672277
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    for n from 1 to 10000 do m:=sqrt((5*n*n-3*n)/2):
    if (trunc(m)=m) then print(n,m): end if: end do: # Paul Weisenhorn, May 01 2009
  • Mathematica
    LinearRecurrence[{ 0, 0, 1442, 0, 0, -1 } , {1, 9, 77, 1519, 12987, 111035 }, 17] (* Ant King, Nov 11 2011 *)
  • PARI
    Vec(x*(x+1)*(x^4+8*x^3+69*x^2+8*x+1)/(x^6-1442*x^3+1) + O(x^50)) \\ Colin Barker, Jun 23 2015

Formula

From Paul Weisenhorn, May 01 2009: (Start)
a(n+6) = 1442*a(n+3)-a(n) with
a(-2)=-77; a(-1)=-9; a(0)=-1; a(1)=1; a(2)=9; a(3)=77;
A = (721+sqrt(10)*228)^k; B = (721-sqrt(10)*228)^k;
a(3*k+1) = (7*(A-B)/sqrt(10)+2*(A+B))/4;
a(3*k+2) = (57*(A-B)/sqrt(10)+18*(A+B))/4;
a(3*k) = (7*(A-B)/sqrt(10)-2*(A+B))/4;
(End)
G.f.: x * (1 + x) * (1 + 8*x + 69*x^2 + 8*x^3 + x^4) / (1-1442*x^3 + x^6). - Ant King, Nov 11 2011