cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046195 Indices of heptagonal numbers (A000566) which are also squares (A000290).

Original entry on oeis.org

1, 6, 49, 961, 8214, 70225, 1385329, 11844150, 101263969, 1997643025, 17079255654, 146022572641, 2880599856289, 24628274808486, 210564448483921, 4153822995125281, 35513955194580726, 303633788691241009, 5989809878370798481, 51211098762310597974
Offset: 1

Views

Author

Keywords

Comments

(10 * a(n) - 3)^2 - 40 * (A046196(n))^2 = 9. - Ant King, Nov 12 2011
Also numbers n such that the n-th heptagonal number is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 11 2014
Also indices of heptagonal numbers (A000566) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 19 2015
Also nonnegative integers y in the solutions to 2*x^2-5*y^2+4*x+3*y+2+2 = 0, the corresponding values of x being A251927. - Colin Barker, Dec 11 2014

Crossrefs

Programs

  • Maple
    for n from 1 to 10000 do m:=sqrt((5*n^2-3*n)/2):
    if (trunc(m)=m) then print(n,m): end if: end do: # Paul Weisenhorn, May 01 2009
  • Mathematica
    LinearRecurrence[{1 ,0, 1442, -1442, 0, -1, 1}, {1, 6, 49, 961, 8214, 70225, 1385329}, 17] (* Ant King, Nov 12 2011 *)

Formula

From Paul Weisenhorn, May 01 2009: (Start)
Pell equations: r^2-10*s^2=1 with solution (19,6)
(10*n-3)^2-10*(2*m)^2=9; basic solutions: (7,-2); (7,+2)((57,18);
with x=10*n-3; y=2*m; A=(19+6*sqrt(10))^2; B=(19-6*sqrt(10))^2 one get
x(3*k)+sqrt(10)*y(3*k)=(7-2*sqrt(10))*A^k;
x(3*k+1)+sqrt(10)*y(3*k+1)=(7+2*sqrt(10))*A^k;
x(3*k+2)+sqrt(10)*y(3*k+2)=(57+18*sqrt(10))*A^k;
with the eigenvalues A=721+228*sqrt(10); B=721-228*sqrt(10)
one get the recurrences with 1442=4*19*19-2
x(k+6)=1442*x(k+3)-x(k); y(k+6)=1442*y(k+3)-y(k);
m(k+6)=1442*m(k+3)-m(k); n(k+6)=1442*n(k+3)-n(k)-432;
and the explicit formulas
x(3*k+1)=(7*(A^k+B^k)+2*sqrt(10)*(A^k-B^k))/2;
x(3*k+2)=(57*(A^k+B^k)+18*sqrt(10)*(A^k-B^k))/2;
x(3*k)=(7*(A^k+B^k)-2*sqrt(10)*(A^k-B^k))/2;
y(3*k+1)=(7*(A^k-B^k)/sqrt(10)+2*(A^k+B^k)/2;
y(3*k+2)=(57*(A^k-B^k)/sqrt(10)+18*(A^k+B^k))/2;
y(3*k)=(7*(A^k-B^k)/sqrt(10)-2*(A^k+B^k))/2;
n(k)=(x(k)+3)/10; m(k)=y(k)/2;
(End)
a(n) = +a(n-1) +1442*a(n-3) -1442*a(n-4) -a(n-6) +a(n-7). G.f.: -x*(1+5*x+43*x^2-530*x^3+43*x^4+5*x^5+x^6) / ( (x-1)*(x^6-1442*x^3+1) ). - R. J. Mathar, Aug 01 2010
a(n) = 1442*a(n-3) - a(n-6) - 432. - Ant King, Nov 12 2011

Extensions

More terms from Colin Barker, Dec 11 2014

A036354 Heptagonal square numbers.

Original entry on oeis.org

1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609, 350709705290025, 25635978392186449, 9976444135331412025, 729252434211108535809, 53306479301521270428241, 20744638830126197732344369, 1516379800105728357531817761, 110843467413344235941816109721
Offset: 1

Views

Author

Jean-Francois Chariot (jeanfrancois.chariot(AT)afoc.alcatel.fr)

Keywords

Comments

From Ant King, Nov 11 2011: (Start)
This sequence is also the union of the three sequences defined by:
a(3n-2) = ((10 - sqrt(10)) * (3 + sqrt(10))^(4*n-3) - (10 + sqrt(10)) * (-3 + sqrt(10))^(4*n-3))^2 / 1600.
a(3n-1) = 9/160 * ((3 + sqrt(10))^(4*n-2) - (-3 + sqrt(10))^(4*n-2))^2.
a(3n) = ((20 - 7*sqrt(10)) * (3 + sqrt(10))^(4*n) + (20 + 7*sqrt(10)) * (-3 + sqrt(10))^(4*n))^2 / 1600.
Equivalent short forms for these subsequences are:
a(3n-2) = floor((10 - sqrt(10))^2 * (3 + sqrt(10))^(8*n - 6) / 1600).
a(3n-1) = floor( 9/160 * (3 + sqrt(10))^(8*n - 4)).
a(3n) = floor((20 - 7*sqrt(10))^ 2 * (3 + sqrt(10))^(8*n) / 1600).
(End)
Also heptagonal numbers (A000566) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 19 2015

Crossrefs

Programs

  • Maple
    A036354 := proc(n)
    if n <= 7 then
        op(n,[1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609]);
    else
        procname(n-1) +2079362 *(procname(n-3)-procname(n-4)) -procname(n-6) +procname(n-7) ;
    end if;
    end proc:
    seq(A036354(n),n=1..12) ;
  • Mathematica
    LinearRecurrence[{ 1, 0, 2079362, -2079362, 0, -1, 1 }, {1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609 }, 13] (* Ant King, Nov 11 2011 *)
  • PARI
    Vec(-x*(x^6+80*x^5+5848*x^4+222070*x^3+5848*x^2+80*x+1)/((x-1)*(x^6-2079362*x^3+1)) + O(x^100)) \\ Colin Barker, Jan 19 2015

Formula

O.g.f.: -x*(1 + 80*x + 5848*x^2 + 222070*x^3 + 5848*x^4 + 80*x^5 + x^6) / ( (x-1)*(x^6 - 2079362*x^3 + 1) ).
From Richard Choulet, May 08 2009: (Start)
With the first values, for n>=0, a(n+9) = 2079363*(a(n+6) - a(n+3)) + a(n).
On every bisection modulo 2: a(n+1) = 1039681*a(n) + 116964 + 164388*sqrt(40*a(n)^2 + 9*a(n)).
On every bisection modulo 2: a(n+2) = 2079362*a(n+1) - a(n) + 233928. (End)
From Ant King, Nov 11 2011: (Start)
a(n) = a(n-1) + 2079362*a(n-3) - 2079362*a(n-4) - a(n-6) + a(n-7).
a(n) = 2079362*a(n-3) - a(n-6) + 233928.
(End)
From Jonathan Pappas, Jan 16 2022: (Start)
Define the three sequences
b(n) = 1442*b(n-1) - b(n-2) for n >= 2, with b(0) = -77, b(1) = 1;
c(n) = 1442*c(n-1) - c(n-2) for n >= 2, with c(0) = -9, c(1) = 9; and
d(n) = 1442*d(n-1) - d(n-2) for n >= 2, with d(0) = -1, d(1) = 77.
Then, for n >= 1,
a(3n - 2) = b(n)^2,
a(3n - 1) = c(n)^2, and
a(3n) = d(n)^2.
(End)

Extensions

More terms from Eric W. Weisstein
One more term from Richard Choulet, May 08 2009

A114554 Numbers k such that the k-th heptagonal number is 4-almost prime.

Original entry on oeis.org

6, 9, 12, 18, 21, 31, 35, 40, 44, 47, 49, 50, 56, 57, 65, 66, 76, 91, 107, 121, 125, 127, 129, 136, 138, 145, 148, 152, 154, 155, 163, 164, 187, 196, 201, 205, 212, 220, 221, 223, 226, 230, 235, 236, 237, 239, 242, 246, 248, 260, 268, 284, 289, 292, 299, 309
Offset: 1

Views

Author

Jonathan Vos Post, Feb 15 2006

Keywords

Examples

			a(1) = 6 because Hep(6) = 6*(5*6-3)/2 = 81 = 3^4 is 4-almost prime.
a(2) = 9 because Hep(9) = 9*(5*9-3)/2 = 189 = 3^3 * 7 is 4-almost prime.
a(3) = 12 because Hep(12) = 12*(5*12-3)/2 = 342 = 2 * 3^2 * 19 is 4-almost prime.
a(4) = 18 because Hep(18) = 18*(5*18-3)/2 = 783 = 3^3 * 29 is 4-almost prime.
[also 783 = Hep(18) = Hep(Hep(3)) is the smallest 4-almost prime iterated heptagonal number].
a(11) = 49 because Hep(49) = 49*(5*49-3)/2 = 5929 = 7^2 * 11^2 is 4-almost prime (and the smallest such square heptagonal number A046196).
a(27) = 148 because Hep(148) = 148*(5*148-3)/2 = 54538 = 2 * 11 * 37 * 67 is 4-almost prime [also 54538 = Hep(148) = Hep(Hep(8)) is the second smallest 4-almost prime iterated heptagonal number].
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500],PrimeOmega[(#(5#-3))/2]==4&] (* Harvey P. Dale, Aug 04 2016 *)

Formula

Numbers k such that Hep(k) = k*(5*k-3)/2 is 4-almost prime.
Numbers k such that A000566(k) is a term of A014613.
Numbers k such that A001222(A000566(k)) = 4.
Numbers k such that A001222(k*(5*k-3)/2) = 4.

Extensions

More terms from Harvey P. Dale, Aug 04 2016
Showing 1-3 of 3 results.