cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A342709 12-gonal (dodecagonal) square numbers.

Original entry on oeis.org

1, 64, 3025, 142129, 6677056, 313679521, 14736260449, 692290561600, 32522920134769, 1527884955772561, 71778070001175616, 3372041405099481409, 158414167969674450625, 7442093853169599697984, 349619996931001511354641, 16424697761903901433970161
Offset: 1

Views

Author

Bernard Schott, Mar 19 2021

Keywords

Comments

The 12-gonal square numbers k correspond to the nonnegative integer solutions of the Diophantine equation k = d*(5*d-4) = c^2, equivalent to (5*d-2)^2 - 5*c^2 = 4. Substituting x = 5*d-2 and y = c gives the Pell-Fermat's equation x^2 - 5*y^2 = 4.
The solutions x are in A342710, while corresponding solutions y that are also the indices c of the squares which are 12-gonal are in A033890.
The indices d of the corresponding 12-gonal which are squares are in A081068.

Examples

			142129 = 169*(5*169-4) = 377^2, so 142129 is the 169th 12-gonal number and the 377th square, hence 142129 is a term.
		

Crossrefs

Intersection of A000290 (squares) and A051624 (12-gonal numbers).
Similar for n-gonal squares: A001110 (triangular), A036353 (pentagonal), A046177 (hexagonal), A036354 (heptagonal), A036428 (octagonal), A036411 (9-gonal), A188896 (there are no 10-gonal squares > 1), A333641 (11-gonal), this sequence (12-gonal).

Programs

  • Maple
    with(combinat):
    seq(fibonacci(4*n-2)^2, n=1..16);
  • Mathematica
    Table[Fibonacci[4*n - 2]^2, {n, 1, 16}] (* Amiram Eldar, Mar 19 2021 *)
  • PARI
    a(n) = fibonacci(4*n-2)^2; \\ Michel Marcus, Mar 21 2021

Formula

G.f.: x*(1 + 16*x + x^2)/((1 - x)*(1 - 47*x + x^2)). - Stefano Spezia, Mar 20 2021
a(n) = 48*a(n-1) - 48*a(n-2) + a(n-3). - Kevin Ryde, Mar 20 2021
a(n) = 9*A161582(n) + 1. - Hugo Pfoertner, Mar 19 2021
a(n) = A033890(n-1)^2.

A046196 Indices of square numbers which are also heptagonal.

Original entry on oeis.org

1, 9, 77, 1519, 12987, 111035, 2190397, 18727245, 160112393, 3158550955, 27004674303, 230881959671, 4554628286713, 38940721617681, 332931625733189, 6567770830889191, 56152493568021699, 480087173425298867, 9470720983513926709, 80971856784365672277
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    for n from 1 to 10000 do m:=sqrt((5*n*n-3*n)/2):
    if (trunc(m)=m) then print(n,m): end if: end do: # Paul Weisenhorn, May 01 2009
  • Mathematica
    LinearRecurrence[{ 0, 0, 1442, 0, 0, -1 } , {1, 9, 77, 1519, 12987, 111035 }, 17] (* Ant King, Nov 11 2011 *)
  • PARI
    Vec(x*(x+1)*(x^4+8*x^3+69*x^2+8*x+1)/(x^6-1442*x^3+1) + O(x^50)) \\ Colin Barker, Jun 23 2015

Formula

From Paul Weisenhorn, May 01 2009: (Start)
a(n+6) = 1442*a(n+3)-a(n) with
a(-2)=-77; a(-1)=-9; a(0)=-1; a(1)=1; a(2)=9; a(3)=77;
A = (721+sqrt(10)*228)^k; B = (721-sqrt(10)*228)^k;
a(3*k+1) = (7*(A-B)/sqrt(10)+2*(A+B))/4;
a(3*k+2) = (57*(A-B)/sqrt(10)+18*(A+B))/4;
a(3*k) = (7*(A-B)/sqrt(10)-2*(A+B))/4;
(End)
G.f.: x * (1 + x) * (1 + 8*x + 69*x^2 + 8*x^3 + x^4) / (1-1442*x^3 + x^6). - Ant King, Nov 11 2011

A253920 Indices of centered octagonal numbers (A016754) which are also heptagonal numbers (A000566).

Original entry on oeis.org

1, 5, 39, 760, 6494, 55518, 1095199, 9363623, 80056197, 1579275478, 13502337152, 115440979836, 2277314143357, 19470360808841, 166465812866595, 3283885415444596, 28076246784010850, 240043586712649434, 4735360491756963355, 40485928392182836139
Offset: 1

Views

Author

Colin Barker, Jan 19 2015

Keywords

Comments

Also positive integers y in the solutions to 5*x^2 - 8*y^2 - 3*x + 8*y - 2 = 0, the corresponding values of x being A046195.

Examples

			5 is in the sequence because the 5th centered octagonal number is 81, which is also the 6th heptagonal number.
		

Crossrefs

Programs

  • Magma
    I:=[1,5,39,760,6494,55518,1095199]; [n le 7 select I[n] else Self(n-1)+1442*Self(n-3)-1442*Self(n-4)-Self(n-6)+Self(n-7): n in [1..25]]; // Vincenzo Librandi, Jan 20 2015
  • Mathematica
    CoefficientList[Series[(4 x^5 + 34 x^4 + 721 x^3 - 34 x^2 -4 x - 1)/((x-1) (x^6 - 1442 x^3 + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 20 2015 *)
    LinearRecurrence[{1,0,1442,-1442,0,-1,1},{1,5,39,760,6494,55518,1095199},20] (* Harvey P. Dale, Jul 04 2017 *)
  • PARI
    Vec(x*(4*x^5+34*x^4+721*x^3-34*x^2-4*x-1)/((x-1)*(x^6-1442*x^3+1)) + O(x^100))
    

Formula

a(n) = a(n-1)+1442*a(n-3)-1442*a(n-4)-a(n-6)+a(n-7).
G.f.: x*(4*x^5+34*x^4+721*x^3-34*x^2-4*x-1) / ((x-1)*(x^6-1442*x^3+1)).

Extensions

Corrected by Vincenzo Librandi, Jan 20 2015

A333641 11-gonal (or hendecagonal) square numbers.

Original entry on oeis.org

0, 1, 196, 29241, 1755625, 261468900, 38941102225, 2337990844401, 348201795147556, 51858411008887561, 3113535139359330841, 463705205422871375236, 69060571958250748760481, 4146338334574433921200225, 617522713934165528806340100, 91968930524758079223806760025
Offset: 1

Views

Author

Bernard Schott, Mar 31 2020

Keywords

Comments

The 11-gonal square numbers correspond to the nonnegative integer solutions of the Diophantine equation k*(9*k-7)/2 = m^2, equivalent to (18*k-7)^2 - 72*m^2 = 49. Substituting x = 18*k-7 and y = m gives the Pell equation x^2-72*y^2 = 49. The integer solutions (x,y) = (-7,0), (11,1), (119,14), (1451,171), (11243,1325), ... correspond to the following solutions (k,m) = (0,0), (1,1), (7,14), (81,171), (625,1325), ...

Examples

			1755625 is a term because 625*(9*625-7)/2 = 1325^2 = 1755625; that means that 1755625 is the 625th 11-gonal number and the square of 1325.
		

Crossrefs

Intersection of A000290 (squares) and A051682 (11-gonals).
Cf. A106525.
Cf. A001110 (square triangulars), A036353 (square pentagonals), A046177 (square hexagonals), A036354 (square heptagonals), A036428 (square octagonals), A036411 (square 9-gonals), A188896 (only {0,1} are square 10-gonals), this sequence (square 11-gonals), A342709 (square 12-gonals).

Programs

  • Maple
    for k from 0 to 8000000 do
    d:= k*(9*k-7)/2;
    if issqr(d) then print(k,sqrt(d),d); else fi; od:
  • Mathematica
    Last /@ Solve[(18*x - 7)^2 - 72*y^2 == 49 && x >= 0 && y >= 0 && y < 10^16, {x, y}, Integers] /. Rule -> (#2^2 &) (* Amiram Eldar, Mar 31 2020 *)
  • PARI
    concat(0, Vec(-x*(1 + 195*x + 29045*x^2 + 394670*x^3 + 29045*x^4 + 195*x^5 + x^6)/(-1 + x + 1331714*x^3 - 1331714*x^4 - x^6 + x^7) + O(x^20))) \\ Jinyuan Wang, Mar 31 2020

Formula

a(n) = k*(9*k-7)/2 for n > 1, where k = (A106525(4*n-6) + 7)/18. - Jinyuan Wang, Mar 31 2020

Extensions

More terms from Amiram Eldar, Mar 31 2020
Showing 1-4 of 4 results.