A342709
12-gonal (dodecagonal) square numbers.
Original entry on oeis.org
1, 64, 3025, 142129, 6677056, 313679521, 14736260449, 692290561600, 32522920134769, 1527884955772561, 71778070001175616, 3372041405099481409, 158414167969674450625, 7442093853169599697984, 349619996931001511354641, 16424697761903901433970161
Offset: 1
142129 = 169*(5*169-4) = 377^2, so 142129 is the 169th 12-gonal number and the 377th square, hence 142129 is a term.
-
with(combinat):
seq(fibonacci(4*n-2)^2, n=1..16);
-
Table[Fibonacci[4*n - 2]^2, {n, 1, 16}] (* Amiram Eldar, Mar 19 2021 *)
-
a(n) = fibonacci(4*n-2)^2; \\ Michel Marcus, Mar 21 2021
A046196
Indices of square numbers which are also heptagonal.
Original entry on oeis.org
1, 9, 77, 1519, 12987, 111035, 2190397, 18727245, 160112393, 3158550955, 27004674303, 230881959671, 4554628286713, 38940721617681, 332931625733189, 6567770830889191, 56152493568021699, 480087173425298867, 9470720983513926709, 80971856784365672277
Offset: 1
-
for n from 1 to 10000 do m:=sqrt((5*n*n-3*n)/2):
if (trunc(m)=m) then print(n,m): end if: end do: # Paul Weisenhorn, May 01 2009
-
LinearRecurrence[{ 0, 0, 1442, 0, 0, -1 } , {1, 9, 77, 1519, 12987, 111035 }, 17] (* Ant King, Nov 11 2011 *)
-
Vec(x*(x+1)*(x^4+8*x^3+69*x^2+8*x+1)/(x^6-1442*x^3+1) + O(x^50)) \\ Colin Barker, Jun 23 2015
A253920
Indices of centered octagonal numbers (A016754) which are also heptagonal numbers (A000566).
Original entry on oeis.org
1, 5, 39, 760, 6494, 55518, 1095199, 9363623, 80056197, 1579275478, 13502337152, 115440979836, 2277314143357, 19470360808841, 166465812866595, 3283885415444596, 28076246784010850, 240043586712649434, 4735360491756963355, 40485928392182836139
Offset: 1
5 is in the sequence because the 5th centered octagonal number is 81, which is also the 6th heptagonal number.
-
I:=[1,5,39,760,6494,55518,1095199]; [n le 7 select I[n] else Self(n-1)+1442*Self(n-3)-1442*Self(n-4)-Self(n-6)+Self(n-7): n in [1..25]]; // Vincenzo Librandi, Jan 20 2015
-
CoefficientList[Series[(4 x^5 + 34 x^4 + 721 x^3 - 34 x^2 -4 x - 1)/((x-1) (x^6 - 1442 x^3 + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 20 2015 *)
LinearRecurrence[{1,0,1442,-1442,0,-1,1},{1,5,39,760,6494,55518,1095199},20] (* Harvey P. Dale, Jul 04 2017 *)
-
Vec(x*(4*x^5+34*x^4+721*x^3-34*x^2-4*x-1)/((x-1)*(x^6-1442*x^3+1)) + O(x^100))
A333641
11-gonal (or hendecagonal) square numbers.
Original entry on oeis.org
0, 1, 196, 29241, 1755625, 261468900, 38941102225, 2337990844401, 348201795147556, 51858411008887561, 3113535139359330841, 463705205422871375236, 69060571958250748760481, 4146338334574433921200225, 617522713934165528806340100, 91968930524758079223806760025
Offset: 1
1755625 is a term because 625*(9*625-7)/2 = 1325^2 = 1755625; that means that 1755625 is the 625th 11-gonal number and the square of 1325.
Cf.
A001110 (square triangulars),
A036353 (square pentagonals),
A046177 (square hexagonals),
A036354 (square heptagonals),
A036428 (square octagonals),
A036411 (square 9-gonals),
A188896 (only {0,1} are square 10-gonals), this sequence (square 11-gonals),
A342709 (square 12-gonals).
-
for k from 0 to 8000000 do
d:= k*(9*k-7)/2;
if issqr(d) then print(k,sqrt(d),d); else fi; od:
-
Last /@ Solve[(18*x - 7)^2 - 72*y^2 == 49 && x >= 0 && y >= 0 && y < 10^16, {x, y}, Integers] /. Rule -> (#2^2 &) (* Amiram Eldar, Mar 31 2020 *)
-
concat(0, Vec(-x*(1 + 195*x + 29045*x^2 + 394670*x^3 + 29045*x^4 + 195*x^5 + x^6)/(-1 + x + 1331714*x^3 - 1331714*x^4 - x^6 + x^7) + O(x^20))) \\ Jinyuan Wang, Mar 31 2020
Showing 1-4 of 4 results.
Comments