A046237 Numbers whose cube is palindromic in base 7.
0, 1, 2, 4, 8, 16, 50, 100, 200, 344, 688, 1376, 2402, 4804, 9608, 16808, 33616, 67232, 117650, 235300, 470600, 823544, 1647088, 3294176, 5764802, 11529604, 23059208, 40353608, 80707216, 161414432, 282475250, 564950500, 1129901000, 1977326744, 3954653488, 7909306976
Offset: 1
Links
- Patrick De Geest, World!Of Numbers, Palindromic cubes in bases 2 to 17.
Crossrefs
Cf. A046238.
Programs
-
PARI
isok(k) = my(d=digits(k^3, 7)); Vecrev(d) == d; \\ Michel Marcus, Aug 02 2022
-
Python
from itertools import count, islice from sympy.ntheory import is_palindromic as ispal def agen(start=0): yield from (k for k in count(start) if ispal(k**3, 7)) print(list(islice(agen(), 22))) # Michael S. Branicky, Aug 02 2022
Extensions
a(30)-a(36) from Michael S. Branicky, Aug 03 2022
Comments