A046243 Numbers whose cube is palindromic in base 11.
0, 1, 2, 7, 12, 122, 133, 1332, 14642, 14763, 15984, 161052, 162504, 175704, 1771562, 1772893, 1932624, 19487172, 19503144, 19648344, 21258744, 214358882, 214373523, 214521264, 216130564, 233846064, 2357947692, 2358123384, 2377434984, 2572306584, 25937424602
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..36
- Patrick De Geest, World!Of Numbers, Palindromic cubes in bases 2 to 17.
Programs
-
Mathematica
For[i = 1, i < 1000000, i++, tmp = IntegerDigits[i^3, 11]; If[tmp == Reverse[tmp], Print[i]];]; (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 13 2006 *)
-
PARI
isok(k) = my(d=digits(k^3, 11)); Vecrev(d) == d; \\ Michel Marcus, Aug 02 2022
-
Python
from itertools import count, islice from sympy.ntheory import is_palindromic as ispal def agen(start=0): yield from (k for k in count(start) if ispal(k**3, 11)) print(list(islice(agen(), 17))) # Michael S. Branicky, Aug 02 2022
Extensions
More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 13 2006
a(29) and beyond from Michael S. Branicky, Aug 07 2022
Comments