A046253 Equal to the sum of its nonzero digits raised to its own power.
0, 1, 3435, 438579088
Offset: 1
Examples
3435 = 3^3 + 4^4 + 3^3 + 5^5.
References
- J. S. Madachy, "Madachy's Mathematical Recreations", Dover N.Y., pp. 163-175.
- C. A. Pickover, "Keys to Infinity", Wiley 1995, Ch. 22, pp. 169-171.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 37.
- David Wells, "Curious and Interesting Numbers", Penguin 1988, pp. 169, 190.
Links
- Devin Akman, Munchausen Numbers Redux, Missouri J. Math. Sci. 30 (2018), no. 1, 1--4.
- Geoff Bailey, C program for the sequence (cf. Hutchens link for more info), Aug. 1998.
- Daan van Berkel, On a curious property of 3435, arXiv:0911.3038 [math.HO], 2009.
- Jason Hutchens, power summation (originally at ciips.ee.uwa.edu.au/~hutch), 1997.
- Eric Weisstein's World of Mathematics, Münchhausen Number.
Programs
-
C
see Bailey and Hutchens links
-
Mathematica
Select[Range[0,10000],Total[#^#&/@DeleteCases[IntegerDigits@#,0]]==#&] (* Giorgos Kalogeropoulos, May 08 2019 *)
-
PARI
select( {is_A046253(n)=n==A045512(n)}, [0..10^4]) \\ To find the 4th solution, multiply the set by 51817. - M. F. Hasler, Oct 01 2024
Comments