A046304 Divisible by at least 5 primes (counted with multiplicity).
32, 48, 64, 72, 80, 96, 108, 112, 120, 128, 144, 160, 162, 168, 176, 180, 192, 200, 208, 216, 224, 240, 243, 252, 256, 264, 270, 272, 280, 288, 300, 304, 312, 320, 324, 336, 352, 360, 368, 378, 384, 392, 396, 400, 405, 408, 416, 420, 432, 440, 448, 450, 456
Offset: 1
Keywords
Links
- John Cerkan, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[500],PrimeOmega[#]>4&] (* Harvey P. Dale, Apr 16 2013 *)
-
PARI
is(n)=bigomega(n)>4 \\ Charles R Greathouse IV, Sep 17 2015
-
Python
from math import prod, isqrt from sympy import primerange, primepi, integer_nthroot def A046304(n): def bisection(f, kmin=0, kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def almostprimepi(n, k): if k==0: return int(n>=1) def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1))) return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n)) def f(x): return n+1+sum(almostprimepi(x,k) for k in range(1,5)) return bisection(f,n,n) # Chai Wah Wu, Mar 29 2025
Formula
Product p_i^e_i with Sum e_i >= 5.
a(n) = n + O(n (log log n)^3/log n). - Charles R Greathouse IV, Apr 07 2017