cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046304 Divisible by at least 5 primes (counted with multiplicity).

Original entry on oeis.org

32, 48, 64, 72, 80, 96, 108, 112, 120, 128, 144, 160, 162, 168, 176, 180, 192, 200, 208, 216, 224, 240, 243, 252, 256, 264, 270, 272, 280, 288, 300, 304, 312, 320, 324, 336, 352, 360, 368, 378, 384, 392, 396, 400, 405, 408, 416, 420, 432, 440, 448, 450, 456
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Subsequence of A033987.
Cf. A014614.

Programs

  • Mathematica
    Select[Range[500],PrimeOmega[#]>4&] (* Harvey P. Dale, Apr 16 2013 *)
  • PARI
    is(n)=bigomega(n)>4 \\ Charles R Greathouse IV, Sep 17 2015
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, primepi, integer_nthroot
    def A046304(n):
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def almostprimepi(n, k):
            if k==0: return int(n>=1)
            def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
            return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n))
        def f(x): return n+1+sum(almostprimepi(x,k) for k in range(1,5))
        return bisection(f,n,n) # Chai Wah Wu, Mar 29 2025

Formula

Product p_i^e_i with Sum e_i >= 5.
a(n) = n + O(n (log log n)^3/log n). - Charles R Greathouse IV, Apr 07 2017