A046309 Numbers that are divisible by at least 8 primes (counted with multiplicity).
256, 384, 512, 576, 640, 768, 864, 896, 960, 1024, 1152, 1280, 1296, 1344, 1408, 1440, 1536, 1600, 1664, 1728, 1792, 1920, 1944, 2016, 2048, 2112, 2160, 2176, 2240, 2304, 2400, 2432, 2496, 2560, 2592, 2688, 2816, 2880, 2916, 2944, 3024, 3072, 3136
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A046310.
Programs
-
Mathematica
Select[Range[3200],PrimeOmega[#]>7&] (* Harvey P. Dale, May 29 2013 *)
-
PARI
is(n)=bigomega(n)>7 \\ Charles R Greathouse IV, Sep 17 2015
-
Python
from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi def A046309(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,8))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 23 2024
Formula
Product p_i^e_i with Sum e_i >= 8.