cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046313 Numbers that are divisible by at least 10 primes (counted with multiplicity).

Original entry on oeis.org

1024, 1536, 2048, 2304, 2560, 3072, 3456, 3584, 3840, 4096, 4608, 5120, 5184, 5376, 5632, 5760, 6144, 6400, 6656, 6912, 7168, 7680, 7776, 8064, 8192, 8448, 8640, 8704, 8960, 9216, 9600, 9728, 9984, 10240, 10368, 10752, 11264, 11520, 11664, 11776
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Subsequence of A033987, A046304, A046305, A046307, A046309, and A046311.
Cf. A046314.

Programs

  • Mathematica
    Select[Range[12000],PrimeOmega[#]>9&] (* Harvey P. Dale, Dec 17 2018 *)
  • PARI
    is(n)=bigomega(n)>9 \\ Charles R Greathouse IV, Sep 17 2015
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A046313(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,10)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Product p_i^e_i with Sum e_i >= 10.
a(n) = n + O(n (log log n)^8/log n). - Charles R Greathouse IV, Apr 07 2017