A046321 Odd numbers divisible by exactly 8 primes (counted with multiplicity).
6561, 10935, 15309, 18225, 24057, 25515, 28431, 30375, 35721, 37179, 40095, 41553, 42525, 47385, 50301, 50625, 56133, 59535, 61965, 63423, 66339, 66825, 67797, 69255, 70875, 78975, 80919, 83349, 83835, 84375, 86751, 88209, 89667
Offset: 1
Keywords
Links
- Zak Seidov, Table of n, a(n) for n = 1..35737
Crossrefs
Cf. A046310.
Programs
-
Mathematica
Select[Range[1,100001,2],PrimeOmega[#]==8&] (* Harvey P. Dale, Apr 28 2018 *)
-
PARI
list(lim)=my(v=List()); forprime(a=3,lim\2187, my(La=lim\a); forprime(b=3,min(La\729,a), my(Lb=La\b); forprime(c=3,min(Lb\243,b), my(Lc=Lb\c); forprime(d=3,min(Lc\81,c), my(Ld=Lc\d); forprime(e=3,min(Ld\27,d), my(Le=Ld\e,E=a*b*c*d*e); forprime(f=3,min(Le\9,e), my(Lf=Le\f,F=E*f); forprime(g=3,min(Lf\3,f), my(Lg=Lf\g,G=F*g); forprime(h=3,min(Lg,g), listput(v,G*h))))))))); Set(v) \\ Charles R Greathouse IV, Aug 23 2024
-
Python
from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi def A046321(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,3,1,8))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 23 2024
Formula
a(n) ~ A046310(n) ~ 5040n log n / (log log n)^7. - Charles R Greathouse IV, Aug 23 2024
Extensions
Offset changed 0=>1 by Zak Seidov, Feb 08 2016