cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046321 Odd numbers divisible by exactly 8 primes (counted with multiplicity).

Original entry on oeis.org

6561, 10935, 15309, 18225, 24057, 25515, 28431, 30375, 35721, 37179, 40095, 41553, 42525, 47385, 50301, 50625, 56133, 59535, 61965, 63423, 66339, 66825, 67797, 69255, 70875, 78975, 80919, 83349, 83835, 84375, 86751, 88209, 89667
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Cf. A046310.

Programs

  • Mathematica
    Select[Range[1,100001,2],PrimeOmega[#]==8&] (* Harvey P. Dale, Apr 28 2018 *)
  • PARI
    list(lim)=my(v=List()); forprime(a=3,lim\2187, my(La=lim\a); forprime(b=3,min(La\729,a), my(Lb=La\b); forprime(c=3,min(Lb\243,b), my(Lc=Lb\c); forprime(d=3,min(Lc\81,c), my(Ld=Lc\d); forprime(e=3,min(Ld\27,d), my(Le=Ld\e,E=a*b*c*d*e); forprime(f=3,min(Le\9,e), my(Lf=Le\f,F=E*f); forprime(g=3,min(Lf\3,f), my(Lg=Lf\g,G=F*g); forprime(h=3,min(Lg,g), listput(v,G*h))))))))); Set(v) \\ Charles R Greathouse IV, Aug 23 2024
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A046321(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,3,1,8)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024
    

Formula

a(n) ~ A046310(n) ~ 5040n log n / (log log n)^7. - Charles R Greathouse IV, Aug 23 2024

Extensions

Offset changed 0=>1 by Zak Seidov, Feb 08 2016