A046323 Odd numbers divisible by exactly 10 primes (counted with multiplicity).
59049, 98415, 137781, 164025, 216513, 229635, 255879, 273375, 321489, 334611, 360855, 373977, 382725, 426465, 452709, 455625, 505197, 535815, 557685, 570807, 597051, 601425, 610173, 623295, 637875, 710775, 728271, 750141, 754515, 759375
Offset: 1
Keywords
Links
- John Cerkan, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A046314.
Programs
-
Mathematica
Select[Range[9,800001,2],PrimeOmega[#]==10&] (* Harvey P. Dale, May 26 2013 *)
-
Python
from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A046323(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,3,1,10))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 09 2024